Stochasticity is an ingredient that may allow the breaking of the frozen-in law in the reconnection process. It will first be argued that the non-ideal effects may be considered as an implicit way to introduce stochasticity. Yet there also exists an explicit stochasticity that does not require the invocation of non-ideal effects. This comes from the spatial (or Eulerian) chaos of magnetic field lines that can show up only in a truly three-dimensional description of magnetic reconnection since the two-dimensional models impose the integrability of the magnetic field lines. Some implications of this magnetic braiding, such as the increased particle finite-time Lyapunov exponents and increased acceleration of charged particles, are discussed in the frame of tokamak sawteeth that forms a laboratory prototype of spontaneous magnetic reconnection. A justification for an increased reconnection rate with chaotic vs. the integrable magnetic field lines is proposed. Moreover, in 3D, the Eulerian chaos of the magnetic field lines may coexist with the Eulerian chaos of velocity field lines, that is more commonly named the turbulence.

1.
R. G.
Giovanelli
,
Nature
158
,
81
(
1946
).
2.
J.
Birn
and
E. R.
Priest
,
Reconnection of Magnetic Fields
(
Cambridge University Press
,
Cambridge, UK
,
2007
).
3.
E. G.
Zweibel
and
M.
Yamada
,
Annu. Rev. Astron. Astrophys.
47
,
291
332
(
2009
).
4.
V.
Angelopoulos
,
J. P.
McFadden
,
D.
Larson
,
C. W.
Carlson
,
S. B.
Mende
,
H.
Frey
,
T.
Phan
,
D. G.
Sibeck
,
K.-H.
Glassmeier
,
U.
Auster
 et al,
Science
321
,
931
935
(
2008
).
5.
S.
Von Goeler
,
W.
Stodiek
, and
N.
Sauthoff
,
Phys. Rev. Lett.
33
,
1201
(
1974
).
6.
R.
von Steiger
,
Front. Phys.
1
,
6
(
2013
).
7.
A.
Retinò
,
D.
Sundkvist
,
A.
Vaivads
,
F.
Mozer
,
M.
André
, and
C. J.
Owen
,
Nat. Phys.
3
,
235
238
(
2007
).
8.
A. J.
Chorin
,
J. Fluid. Mech.
57
,
785
796
(
1973
).
9.
G.
Iyer
, “
A stochastic Lagrangian formulation of the incompressible Navier-Stokes and related transport equations, Ph.D. thesis
,” (
University of Chicago
,
2006
).
10.
G. L.
Eyink
,
J. Math. Phys.
50
,
083102
(
2009
).
11.
E. N.
Parker
,
J. Geophys. Res.
62
,
509
, doi: (
1957
).
12.
P. A.
Sweet
, in
Electromagnetic Phenomena in Cosmical Physics
, edited by
B.
Lehnert
(
Cambridge University Press
,
New York
,
1958
), p.
123
.
13.
A. H.
Boozer
,
Phys. Fluids
26
,
1288
(
1983
).
14.
J. R.
Cary
and
R. G.
Littlejohn
,
Ann. Phys.
151
,
1
34
(
1983
).
15.
P. J.
Morrison
,
Phys. Plasmas
7
,
2279
2289
(
2000
).
16.
M. S.
Janaki
and
G.
Ghosh
,
J. Phys. A: Math. Gen.
20
,
3679
3685
(
1987
).
17.
D. F.
Escande
,
Plasma Phys. Controlled Fusion
58
,
113001
(
2016
).
18.
M.-C.
Firpo
and
B.
Coppi
,
Phys. Rev. Lett.
90
,
095003
(
2003
).
19.
M.-C.
Firpo
,
W.
Ettoumi
,
R.
Farengo
,
H. E.
Ferrari
,
P. L.
García-Martínez
, and
A. F.
Lifschitz
,
Phys. Plasmas
20
,
072305
(
2013
).
20.
W.
Ettoumi
, see http://www.theses.fr/2013EPXX0100 for thèse de l'Ecole Polytechnique (
2013
).
21.
M.-C.
Firpo
,
A. F.
Lifschitz
,
W.
Ettoumi
,
R.
Farengo
,
H. E.
Ferrari
, and
P. L.
García-Martínez
, “
Evidence and relevance of spatially chaotic magnetic field lines in MCF devices
” (unpublished).
22.
J. A.
Wesson
,
B.
Alper
,
A. W.
Edwards
, and
R. D.
Gill
,
Phys. Rev. Lett.
79
,
5018
(
1997
).
23.
E. J.
Hinch
, “
Mixing: Turbulence and chaos - An introduction
,” in
Mixing: Chaos and Turbulence
, NATO ASI Series Vol.
373
, edited by
H.
Chaté
,
E.
Villermaux
, and
J.-M.
Chomaz
, pp.
37
56
(
Kluwer Academic/Plenum
,
1999
).
24.
As the Eulerian chaos of velocity field lines can only exist in 3D, two-dimensional turbulence may then be called a misuse/abuse of language.
25.
B. V.
Chirikov
,
J. Nucl. Energy Part C: Plasma Phys.
1
,
253
(
1960
)
B. V.
Chirikov
, [
At. Energ.
6
,
630
(
1959
) (in Russian)].
26.
D. F.
Escande
,
Phys. Rep.
121
,
165
(
1985
).
27.
V. S.
Udintsev
,
M.
Ottaviani
,
P.
Maget
,
G.
Giruzzi
,
J.-L.
Ségui
,
T.
Aniel
,
J. F.
Artaud
,
F.
Clairet
,
M.
Goniche
,
G. T.
Hoang
 et al,
Plasma Phys. Controlled Fusion
47
,
1111
(
2005
).
28.
W.
Gekelman
,
T.
De Haas
,
W.
Daughton
,
B.
Van Compernolle
,
T.
Intrator
, and
S.
Vincena
,
Phys. Rev. Lett.
116
,
235101
(
2016
).
You do not currently have access to this content.