We consider the stationary magnetohydrodynamical (MHD) equilibrium equation for an axisymmetric plasma undergoing azimuthal rotations. The case of cylindrical symmetry is treated, and we present two semi-analytical solutions for the stationary MHD equilibrium equations, from which a number of physical properties of the magnetically confined plasma are derived.
References
1.
L. S.
Solov'ev
, “Symmetric magnetohydrodynamic flow and helical waves in a circular plasma cylinder
,” in Reviews of Plasma Physics
edited by M. A.
Leontovich
(Consultants Bureau
, New York
, 1967
), Vol. 3
.2.
M. G.
Bell
, Nucl. Fusion
19
, 33
(1979
).3.
S.
Suckewer
, H. P.
Eubank
, R. J.
Goldston
, E.
Hinnov
, and N. R.
Sauthoff
, Phys. Rev. Lett.
43
, 207
(1979
).4.
C.
Plumpton
and V. C. A.
Ferraro
, Astrophys. J.
121
, 168
(1955
).5.
M.
Long
, M. M.
Romanova
, and R. V. E.
Lovelace
, Astrophys. J.
634
, 1214
(2005
).6.
E. K.
Maschke
and H.
Perrin
, Plasma Phys.
22
, 579
(1980
).7.
H.
Grad
and H.
Rubin
, “Hydromagnetic equilibria and force-free fields
,” in Proceedings of the 2nd UN Conference on the Peaceful Uses of Atomic Energy
(IAEA
, Geneva
, 1958
), Vol. 31
, p. 190
.8.
V. D.
Shafranov
, “Plasma equilibrium in a magnetic field
,” in Reviews of Plasma Physics
, edited by M. A.
Leontovich
(Consultants Bureau
, New York
, 1966
), Vol. 2
.9.
10.
J. P.
Goedbloed
, R.
Keppens
, and S.
Poedts
, Advanced Magnetohydrodynamics with Applications to Laboratory and Astrophysical Plasmas
(Cambridge University Press
, 2010
).11.
R. A.
Clemente
and R.
Farengo
, Phys. Fluids
27
, 776
(1984
).12.
O.
Missiato
and J. P.
Sudano
, in Proceedings of 1st Latin-American Workshop on Plasma Physics and Controlled Nuclear Fusion Research
(Sociedade Brasileira de Física
, São Paulo
, 1982
), Vol. 1
, p. 264
.13.
R. L.
Viana
, Int. J. Theor. Phys.
37
, 2657
(1998
).14.
R. L.
Viana
, R. A.
Clemente
, and S. R.
Lopes
, Plasma Phys. Controlled Fusion
39
, 197
(1997
).15.
R. L.
Viana
, Braz. J. Phys.
31
, 58
(2001
).16.
T.
Neukirch
, Introduction to the Theory of MHD Equilibria
(CreateSpace Independent Publishing Platform
, 2015
).17.
M. Y.
Kucinski
and I. L.
Caldas
, “MHD equilibrium equation in symmetric systems
,” e-print arXiv:1103.5063.18.
J. W.
Edenstrasser
, J. Plasma Phys.
24
, 299
(1980
).19.
V. C. A.
Ferraro
, Mon. Not. R. Astron. Soc.
97
, 458
(1937
).20.
E. K.
Maschke
and H. J.
Perrin
, Phys. Lett. A
102
, 106
(1984
).21.
R. A.
Clemente
and R. L.
Viana
, Plasma Phys. Controlled Fusion
41
, 567
(1999
).22.
R. A.
Clemente
and R. L.
Viana
, Braz. J. Phys.
29
, 457
(1999
).23.
H.
Tasso
and G. N.
Throumoulopoulos
, Phys. Plasmas
5
, 2378
(1998
).24.
C. G. L.
Martins
, M.
Roberto
, I. L.
Caldas
, and F. L.
Braga
, Phys. Plasmas
18
, 082508
(2011
).25.
D.
Ciro
and I. L.
Caldas
, Phys. Plasmas
20
, 102512
(2013
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.