A new method to calculate thermodynamically consistent shell corrections in a wide range of parameters is used to predict the region of validity of the Thomas-Fermi approach. The method is applicable both at low and high density. Thermodynamic functions of electrons calculated by the Thomas–Fermi model are compared with quantum, exchange, and shell corrections. The corrections become quite big at moderate and low densities and low temperatures in the region of strongly coupled plasma.
References
1.
R. P.
Feynman
, N.
Metropolis
, and E.
Teller
, “ Equations of state of elements based on the generalized Fermi–Thomas theory
,” Phys. Rev.
75
, 1561
–1573
(1949
).2.
A.
Nikiforov
, V.
Novikov
, and V.
Uvarov
, in Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State
, Progress in Mathematical Physics (Birkhèauser Verlag
, 2006
).3.
D.
Young
, J.
Wolford
, F.
Rogers
, and K.
Holian
, “ Theory of the aluminum shock equation of state to 104 mbar
,” Phys. Lett. A
108
, 157
–160
(1985
).4.
K. S.
Holian
, “ A new equation of state for aluminum
,” J. Appl. Phys.
59
, 149
–157
(1986
).5.
G.
Kerley
, “ Hypervelocity impact proceedings of the 1986 symposium theoretical equation of state for aluminum
,” Int. J. Impact Eng.
5
, 441
–449
(1987
).6.
O.
Shemyakin
, P.
Levashov
, and K.
Khishchenko
, “ Equation of state of al based on the Thomas–Fermi model
,” Contrib. Plasma Phys.
52
, 37
–40
(2012
).7.
P. A. M.
Dirac
, “ Note on exchange phenomena in the Thomas atom
,” Math. Proc. Cambridge Phil. Soc.
26
, 376
–385
(1930
).8.
C. F. V.
Weizsäcker
, “ Zur Theorie der Kernmassen
,” Z. Phys.
96
, 431
–458
(1935
).9.
D. A.
Kirzhnits
, “ Quantum corrections to the Thomas–Fermi equation
,” JETP
5
, 64
(1957
), available at http://www.jetp.ac.ru/cgi-bin/e/index/e/5/1/p64?a=list.10.
N. N.
Kalitkin
, “ The Thomas-Fermi model of the atom with quantum and exchange corrections
,” JETP
11
, 1106
–1110
(1960
), available at http://www.jetp.ac.ru/cgi-bin/e/index/e/11/5/p1106?a=list.11.
D. A.
Kirzhnits
, “ The limits of applicability of the quasi-classical equation of state of matter
,” JETP
35
, 1081
(1959
), available at http://www.jetp.ac.ru/cgi-bin/e/index/e/8/6/p1081?a=list.12.
S.
Dyachkov
and P.
Levashov
, “ Region of validity of the finite-temperature Thomas-Fermi model with respect to quantum and exchange corrections
,” Phys. Plasmas
21
, 052702
(2014
).13.
J. W.
Zink
, “ Shell structure and the Thomas-Fermi equation of state
,” Phys. Rev.
176
, 279
–284
(1968
).14.
D. A.
Kirzhnits
and G. V.
Shpatakovskaya
, “ Atomic structure oscillation effects
,” JETP
35
, 1088
–1094
(1972
), available at http://www.jetp.ac.ru/cgi-bin/e/index/e/35/6/p1088?a=list.15.
B.-G.
Englert
and J.
Schwinger
, “ Atomic-binding-energy oscillations
,” Phys. Rev. A
32
, 47
–63
(1985
).16.
I. L.
Iosilevsky
and V. K.
Gryaznov
, “ About the precision of thermodynamical description of a gas plasma in the Thomas-Fermi and Saha approximations
,” Teplofiz. Visokyh Temp.
19
, 1121
–1126
(1981
).17.
D. A.
Kirzhnits
, Y. E.
Lozovik
, and G. V.
Shpatakovskaya
, “ Statistical model of matter
,” Sov. Phys. Usp.
18
, 649
(1975
).18.
G. V.
Shpatakovskaya
, “ Semiclassical model of the structure of matter
,” Phys.-Usp.
55
, 429
(2012
).19.
N. N.
Kalitkin
and L. V.
Kuz'mina
, “ Tables of thermodynamic functions of matter at high energy concentrations
,” preprint No. 35 [in Russian] (Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow, 1975).20.
S.
Dyachkov
and P.
Levashov
, “ Wide-range shell correction to the Thomas–Fermi theory and equation of state for electrons
,” e-print arXiv:1608.08124 [physics.plasm-ph].21.
P.
Fromy
, C.
Deutsch
, and G.
Maynard
, “ Thomas–Fermi-like and average atom models for dense and hot matter
,” Phys. Plasmas
3
, 714
–730
(1996
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.