By using a self-consistent particle-in-cell simulation, we investigated the effect of driving frequency (27.12–70 MHz) on the electron energy distribution function (EEDF) and electron-sheath interaction in a low pressure (5 mTorr) capacitively coupled Ar discharge for a fixed discharge voltage. We observed a mode transition with driving frequency, changing the shape of EEDF from a strongly bi-Maxwellian at a driving frequency of 27.12 MHz to a convex type distribution at an intermediate frequency, 50 MHz, and finally becomes a weak bi-Maxwellian at a higher driving frequency, i.e., above 50 MHz. The transition is caused by the electric field transients, which is of the order of electron plasma frequency caused by the energetic “beams” of electrons ejected from near the sheath edge. Below the transition frequency, 50 MHz, these high energy electrons redistribute their energy with low energy electrons, thereby increasing the effective electron temperature in the plasma, whereas the plasma density remains nearly constant. Above the transition frequency, high-energy electrons are confined between opposite sheaths, which increase the ionization probability and therefore the plasma density increases drastically.

1.
A. A.
Howling
,
J. L.
Dorier
,
C.
Hollenstein
,
U.
Kroll
, and
F.
Finger
,
J. Vac. Sci. Technol., A
10
,
1080
(
1992
).
2.
M.
Surendra
and
D. B.
Graves
,
Appl. Phys. Lett.
59
,
2091
(
1991
).
3.
E.
Abdel-Fattah
and
H.
Sugai
,
Jpn. J. Appl. Phys., Part 1
42
,
6569
(
2003
).
4.
E.
Abdel-Fattah
and
H.
Sugai
,
Appl. Phys. Lett.
83
,
1533
(
2003
).
5.
E.
Abdel-Fattah
,
M.
Bazavan
, and
H.
Sugai
,
Phys. Plasmas
19
,
113503
(
2012
).
6.
E.
Abdel-Fattah
and
H.
Sugai
,
Phys. Plasmas
20
,
023501
(
2013
).
7.
H.
Takekida
and
K.
Nanbu
,
Jpn. J. Appl. Phys., Part 1
43
,
3590
(
2004
).
8.
C. K.
Birdsall
,
Plasma Physics via Computer Simulation
(
Adam Hilger
,
Bristol
,
1991
).
9.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Adam Hilger
,
Bristol
,
1988
).
10.
M. M.
Turner
,
A.
Derzsi
,
Z.
Donkó
,
D.
Eremin
, and
S. J.
Kelly
,
Phys. Plasmas
20
,
013507
(
2013
).
11.
V. A.
Godyak
and
R. B.
Piejak
,
Phys. Rev. Lett.
65
,
996
(
1990
).
12.
T.
Gans
,
J.
Schulze
,
D.
O'Connell
,
U.
Czarnetzki
,
R.
Faulkner
,
A. R.
Ellingboe
, and
M. M.
Turner
,
Appl. Phys. Lett.
89
,
261502
(
2006
).
13.
J.
Schulze
,
T.
Gans
,
D.
O'Connell
,
U.
Czarnetzki
,
A. R.
Ellingboe
, and
M. M.
Turner
,
J. Phys. D: Appl. Phys.
40
,
7008
(
2007
).
14.
S.
Wilczek
,
J.
Trieschmann
,
J.
Schulze
,
E.
Schuengel
,
R. P.
Brinkmann
,
A.
Derzsi
,
I.
Korolov
,
Z.
Donko
, and
T.
Mussenbrock
,
Plasma Sources Sci. Technol.
24
,
024002
(
2015
).
15.
I. D.
Kaganovich
,
O. V.
Polomarov
, and
C. E.
Theodosiou
,
IEEE Trans. Plasma Sci.
34
,
696
(
2006
).
16.
S.
Sharma
,
S. K.
Mishra
, and
P. K.
Kaw
,
Phys. Plasmas
21
,
073511
(
2014
).
17.
S.
Sharma
,
S. K.
Mishra
,
P. K.
Kaw
,
M. M.
Turner
, and
S. K.
Karkari
,
Contrib. Plasma Phys.
55
,
331
(
2015
).
18.
M.
Surendra
and
D. B.
Graves
,
Phys. Rev. Lett.
66
,
1469
(
1991
).
You do not currently have access to this content.