We have analyzed the interplay of ITG turbulence and zonal flows as derived by the reductive perturbation method. Not surprisingly, the overall transport level depends strongly on the physics description of ITG modes. In particular, the fluid resonance turns out to play a dominant role for the excitation of zonal flows. This is the mechanism recently found to lead to the L-H transition and to the nonlinear Dimits upshift in transport code simulations. It is important that we have here taken the nonlinear temperature dynamics from the Reynolds stress as the convected diamagnetic flow. This has turned out to be the most relevant effect as found in transport simulations of the L-H transition, internal transport barriers, and Dimits shift.

1.
A.
Hasegawa
and
K.
Mima
, “
Pseudo-three-dimensional turbulence in magnetized inhomogeneous plasma
,”
Phys. Fluids
21
,
87
(
1978
).
2.
A.
Hasegawa
,
C. G.
Maclennan
, and
Y.
Kodama
, “
Non-linear behaviour and turbulence spectra of drift waves and Rossby waves
,”
Phys. Fluids
22
,
2122
(
1979
).
3.
P. H.
Diamond
,
S. I.
Itoh
,
K.
Itoh
, and
T. S.
Hahm
, “
Zonal flows in plasma—A review
,”
Plasma Phys. Controlled Fusion
47
,
R35
(
2005
).
4.
J.
Weiland
and
H.
Nordman
, “
Transport due to fully toroidal drift waves
,” in
Proceedings of the Varenn Lausanne Workshop on Theory in Fusion Plasmas
,
Chexbres, Switzerland
(
1988
), p.
451
.
5.
A.
Zagorodny
and
J.
Weiland
, “
Statistical theory of turbulent transport (non-Markovian effects)
,”
Phys. Plasmas
6
,
2359
(
1999
).
6.
J.
Weiland
,
Stability and Transport in Magnetic Confinement Systems
(
Springer
,
New York
,
2012
).
7.
J.
Weiland
,
A.
Zagorodny
,
V.
Zasenko
, and
N.
Shatashvili
, “
On the Physics description of fusion plasmas
,”
AIP Conf. Proc.
1445
,
34
(
2012
).
8.
J.
Weiland
, “
Turbulent transport in fusion plasmas, effects of toroidicity and fluid closure
,”
AIP Conf. Proc.
1188
,
193
(
2009
).
9.
A.
Hasegawa
and
M.
Wakatani
,
Phys. Rev. Lett.
50
,
682
(
1983
).
10.
J. W.
Connor
and
O. P.
Pogutse
, “
On the relationship between mixing-length and strong turbulence estimates for transport due to drift turbulence
,”
Plasma Phys. Controlled Fusion
43
,
155
(
2001
).
11.
M.
Wakatani
and
A.
Hasegawa
, “
A collisional drift wave description of plasma edge turbulence
,”
Phys. Fluids
27
,
611
(
1984
).
12.
A. M.
Dimits
,
G.
Bateman
,
M. A.
Beer
,
B. I.
Cohen
,
W.
Dorland
,
G. W.
Hammett
,
C.
Kim
,
J. E.
Kinsey
,
M.
Kotschenreuther
,
A. H.
Kritz
,
L.
Lao
,
J.
Mandrekas
,
W. M.
Nevins
,
S. E.
Parker
,
A. J.
Redd
,
D. E.
Shumaker
,
R.
Sydora
, and
J.
Weiland
, “
Comparisons and physics basis of tokamak transport models and turbulence simulations
,”
Phys. Plasmas
7
,
969
(
2000
).
13.
R.
Moestam
,
D.
Shaik
, and
J.
Weiland
, “
Self consistent theory of zonal flows in ion temperature gradient turbulence
,”
Phys. Plasmas
11
,
4801
(
2004
).
14.
G. Q.
Wang
,
J.
Ma
, and
J.
Weiland
, “
Zonal flows near marginal stability in drift wave transport
,”
Phys. Scr.
90
,
065604
(
2015
).
15.
G. Q.
Wang
,
Ma.
Jun
,
J.
Weiland
, and
A.
Zagorodny
, “
Excitation of zonal flows by ion-temperature gradient modes excited by the fluid resonance
,”
Chin. Phys. Lett.
32
,
115201
(
2015
).
16.
J. P.
Mondt
and
J.
Weiland
, “
Two fluid theory of thermal transport in current-carrying edge plasma
,”
Phys. Scr.
39
,
92
(
1989
).
17.
J.
Weiland
, “
Thermal instabilities in drift wave turbulence
,”
Phys. Scr.
90
,
088009
(
2015
).
18.
J.
Weiland
, “
Review of mixing length estimates and effects of toroidicity in a fluid model for turbulent transport in tokamaks
,”
Plasma Phys. Rep.
42
,
502
(
2016
).
19.
N.
Mattor
and
S.
Parker
,
Phys. Rev. Lett.
79
,
3419
(
1997
).
20.
I.
Holod
,
J.
Weiland
, and
A.
Zagorodny
, “
Nonlinear Fluid Closure: Three-mode slab ion temperature gradient problem with diffusion
,”
Phys. Plasmas
9
,
1217
(
2002
).
21.
J.
Weiland
,
C. S.
Liu
, and
A.
Zagorodny
, “
Transition from a coherent three wave system to turbulence with application to the fluid closure
,”
J. Plasma Phys.
81
,
905810101
(
2015
).
22.
J.
Weiland
,
A.
Jarmen
, and
H.
Nordman
, “
Diffusive particle and heat pinch effects in toroidal plasmas
,”
Nucl. Fusion
29
,
1810
(
1989
).
23.
G.
Tardini
,
A. G.
Peeters
,
G. V.
Pereverzev
,
F.
Ryter
, and
the ASDEX Upgrade Team
, “
Theory based modelling of ASDEX Upgrade discharges with ECH modulation
,”
Nucl. Fusion
42
,
L11
(
2002
).
24.
J.
Weiland
and
H.
Nordman
, “
Drift wave model for inward energy transport in tokamak plasmas
,”
Phys. Fluids
B
5
,
1669
(
1993
).
25.
J.
Weiland
,
A.
Zagorodny
, and
V.
Zasenko
, “
Fluid and kinetic modelling on timescales longer than the confinement time in bounded systems
,”
AIP Conf. Proc.
1177
,
96
(
2009
).
26.
J.
Weiland
,
P.
Mantica
, and
the JET-EFDA Contributors
, “
Effects of flow shear on the correlation length of drift wave turbulence
,” in
38th EPS Conference, Strassbourg, France, 27 June–1 July 2011
, paper No. P5.130.
27.
G. M.
Staebler
,
R. E.
Waltz
, and
J. E.
Kinsey
, “
New paradigm for suppression of gyrokinetic turbulence by velocity shear
,”
Phys. Rev. Lett.
110
,
055003
(
2013
).
28.
K.
Nozaki
and
T.
Taniuti
, “
Plasma flow and a soliton in a theta pinch
,”
J. Phys. Soc. Jpn.
46
,
970
(
1979
).
29.
J.
Kinsey
,
G. M.
Staebler
, and
R. E.
Waltz
, “
Predicting core and edge transport barriers in tokamaks using the glf23 drift wave transport model
,”
Phys. Plasmas
12
,
052503
(
2005
).
30.
ITER Physics Basis Editors
, “
Progress in the ITER physics basis, II confinement
,”
Nucl. Fusion
47
,
S1
S413
(
2007
).
31.
B. N.
Rogers
,
J. F.
Drake
, and
A.
Zeiler
, “
Phase space of tokamak edge turbulence, the L-H transition and the formation of the edge pedestal
,”
Phys. Rev. Lett.
81
,
4396
(
1998
).
32.
B. N.
Rogers
,
W.
Dorland
, and
M.
Kotschenreuther
, “
Generation and stability of zonal flows in ion-temperature-gradient mode turbulence
,”
Phys. Rev. Lett.
85
,
5336
(
2000
).
33.
S.-I.
Itoh
and
K.
Itoh
, “
Hydrogen isotope effect on the Dimits shift
,”
Nucl. Fusion
56
,
106028
(
2016
).
34.
F.
Wagner
,
G.
Becker
,
K.
Behringer
,
D.
Campbell
,
A.
Eberhagen
,
W.
Engelhardt
,
G.
Fussmann
,
O.
Gehre
,
J.
Gernhardt
,
G. V.
Gierke
,
G.
Haas
,
M.
Huang
,
F.
Karger
,
M.
Keilhacker
,
Q.
Kluber
,
M.
Kornherr
,
K.
Lackner
,
G.
Lisitano
,
G. G.
Lister
,
H. M.
Mayer
,
D.
Meisel
,
E. R.
Müller
,
H.
Murmann
,
H.
Niedermeyer
,
W.
Poschenrieder
,
H.
Rapp
,
H.
Röhr
,
F.
Schneider
,
G.
Siller
,
E.
Speth
,
A.
Stäbler
,
K. H.
Steuer
,
G.
Venus
,
O.
Vollmer
, and
Z.
, “
Regime of improved confinement and high beta in neutral beam-heated divertor discharges of the ASDEX Tokamak
,”
Phys. Rev. Lett.
49
,
1408
(
1982
).
35.
J.
Weiland
,
K.
Crombe
,
P.
Mantica
,
V.
Naulin
,
T.
Tala
, and
the JET-EFDA Contributors
, “
Comparison of edge and internal transport barriers in drift wave predictive simulations
,”
AIP Conf. Proc.
1392
,
85
(
2011
).
36.
J.
Weiland
, “
Simulations of the L-H transition on experimental advanced superconducting Tokamak
,”
Phys. Plasmas
21
,
122501
(
2014
).
37.
T.
Rafiq
,
A. H.
Kritz
,
J.
Weiland
,
A. Y.
Pankin
, and
L.
Luo
, “
Physics basis of Multi-Mode anomalous transport module
,”
Phys. Plasmas
20
,
032506
(
2013
).
38.
R. E.
Waltz
,
R. R.
Dominguez
, and
G. W.
Hammett
, “
Gyro-Landau fluid models for toroidal geometry
,”
Phys. Fluids
B4
,
3138
(
1992
).
39.
R. E.
Waltz
,
G. D.
Kerbel
, and
J.
Milovich
, “
Toroidal gyro-Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes
,”
Phys. Plasmas
1
,
2229
(
1994
).
40.
A.
Zagorodny
and
J.
Weiland
, “
Non-Markovian renormalization of kinetic coefficients for drift-type turbulence in magnetized plasmas
,”
Phys. Plasmas
16
,
052308
(
2009
).
41.
J.
Weiland
, “
Analytical eigenvalue solution for ITG modes of general modewidth
,”
Phys. Plasmas
11
,
3238
(
2004
).
You do not currently have access to this content.