The self-produced light emission from pulsed plasma discharges and its impact on plasma development are challenging to characterize through simulation and modeling, chiefly due to the large number of radiating species and limited computer memory. Often, photo-processes, such as photo-ionization or photo-emission of electrons, are implemented through over-simplifying approximations or neglected altogether. Here, a method applicable to plasma simulations is implemented in a Particle-in-Cell /Monte Carlo Collision model, which is capable of discretely tracking photons and their corresponding wavelengths. Combined with the appropriate cross sections or quantum yields, a wavelength dependent model for photo-ionization or photo-emission may be implemented. Additionally, by resolving the wavelengths of each photon, an emission spectrum for a region of interest may be generated. Simulations for a pure nitrogen environment reveal that the calculated emission profile of the second positive system agrees well with the experimental spectrum of a pulsed, nanosecond discharge in the same spectral region.

1.
A.
Fierro
,
G.
Laity
, and
A.
Neuber
,
J. Phys. D: Appl. Phys.
45
,
495202
(
2012
).
2.
R. M.
van der Horst
,
T.
Verreycken
,
E. M.
van Veldhuizen
, and
P. J.
Bruggeman
,
J. Phys. D: Appl. Phys.
45
,
345201
(
2012
).
3.
G.
Laity
,
A.
Neuber
,
A.
Fierro
,
J.
Dickens
, and
L.
Hatfield
,
IEEE Trans. Dielectr. Electr. Insul.
18
,
946
(
2011
).
4.
D.
Trienekens
,
S.
Nijdam
, and
U.
Ebert
,
IEEE Trans. Plasma Sci.
42
,
2400
(
2014
).
5.
S.
Nijdam
,
E.
Takahashi
,
A.
Markhosyan
, and
U.
Ebert
,
Plasma Sources Sci. Technol.
23
,
025008
(
2014
).
6.
M.
Zheleznyak
,
A.
Mnatsakanyan
, and
S.
Sizykh
,
High Temp.
20
,
357
(
1982
).
7.
G.
Penney
and
G.
Hummert
,
J. Appl. Phys.
41
,
572
(
1970
).
8.
A.
Kulikovsky
,
J. Phys. D: Appl. Phys.
33
,
1514
(
2000
).
9.
A.
Hallac
,
G.
Georghiou
, and
A.
Metaxas
,
J. Phys. D: Appl. Phys.
36
,
2498
(
2003
).
10.
A.
Luque
,
U.
Ebert
,
C.
Montijn
, and
W.
Hundsdorfer
,
Appl. Phys. Lett.
90
,
081501
(
2007
).
11.
A.
Bourdon
,
V.
Pasko
,
N.
Liu
,
S.
Celestin
,
P.
Segur
, and
E.
Marode
,
Plasma Sources Sci. Technol.
16
,
656
(
2007
).
12.
L.
Papageorgiou
,
A.
Metaxas
, and
G.
Georghiou
,
J. Phys. D: Appl. Phys.
44
,
045203
(
2011
).
13.
D.
Breden
,
K.
Miki
, and
L.
Raja
,
Plasma Sources Sci. Technol.
21
,
034011
(
2012
).
14.
O.
Chanrion
and
T.
Neubert
,
J. Comput. Phys.
227
,
7222
(
2008
).
15.
T.
van der Straaten
and
M.
Kushner
,
J. Appl. Phys.
87
,
2700
(
2000
).
16.
K.
Rajaraman
and
M.
Kushner
,
J. Phys. D: Appl. Phys.
37
,
1780
(
2004
).
17.
H.
Lee
and
J.
Verboncouer
,
Phys. Plasmas
8
,
3077
(
2001
).
18.
A.
Fierro
,
J.
Dickens
, and
A.
Neuber
,
Phys. Plasmas
21
,
123504
(
2014
).
19.
K.
Nanbu
,
Jpn. J. Appl. Phys., Part 1
33
,
4752
(
1994
).
20.
S.
Pancheshnyi
,
S.
Starikovskaia
, and
A.
Starikovskii
,
Chem. Phys.
262
,
349
(
2000
).
21.
G.
Raju
,
Gaseous Electronics
(
CRC Press Taylor and Francis Group
,
2006
).
22.
Y.
Itikawa
,
J. Phys. Chem. Ref. Data
35
,
31
(
2006
).
23.
G.
Dilecce
,
P.
Ambrico
, and
S. D.
Benedictis
,
Chem. Phys. Lett.
431
,
241
(
2006
).
24.
J.
Fons
,
R.
Schappe
, and
C.
Lin
,
Phys. Rev. A
53
,
2239
(
1996
).
25.
T.
Fukuchi
,
R.
Wuerker
, and
A.
Wong
,
J. Chem. Phys.
97
,
9490
(
1992
).
26.
M.
Bak
,
W.
Kim
, and
M.
Cappelli
,
Appl. Phys. Lett.
98
,
011502
(
2011
).
27.
Y.
Raizer
,
Gas Discharge Physics
(
Springer
,
1997
).
28.
I.
Kossyi
,
A.
Kostinksy
,
A.
Matveyev
, and
V.
Silakov
,
Plasma Sources Sci. Technol.
1
,
207
(
1992
).
29.
G.
Edmiston
,
J.
Krile
,
A.
Neuber
,
J.
Dickens
, and
H.
Krompholz
,
IEEE Trans. Plasma Sci.
34
,
1782
(
2006
).
30.
C.
Laux
,
T.
Spence
,
C.
Kruger
, and
R.
Zare
,
Plasma Sources Sci. Technol.
12
,
125
(
2003
).
You do not currently have access to this content.