The irradiation of an atomic cluster with a femtosecond x-ray free-electron laser pulse results in a nanoplasma formation. This typically occurs within a few hundred femtoseconds. By this time the x-ray pulse is over, and the direct photoinduced processes no longer contributing. All created electrons within the nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms, electrons, and ions of various charges. While expanding, it is undergoing electron impact ionization and three-body recombination. Below we present a hydrodynamic model to describe the dynamics of such multi-component nanoplasmas. The model equations are derived by taking the moments of the corresponding Boltzmann kinetic equations. We include the equations obtained, together with the source terms due to electron impact ionization and three-body recombination, in our hydrodynamic solver. Model predictions for a test case, expanding spherical Ar nanoplasma, are obtained. With this model, we complete the two-step approach to simulate x-ray created nanoplasmas, enabling computationally efficient simulations of their picosecond dynamics. Moreover, the hydrodynamic framework including collisional processes can be easily extended for other source terms and then applied to follow relaxation of any finite non-isothermal multi-component nanoplasma with its components relaxed into local thermodynamic equilibrium.

1.
W.
Ackermann
,
G.
Asova
,
V.
Ayvazyan
,
A.
Azima
,
N.
Baboi
,
J.
Bähr
,
V.
Balandin
,
B.
Beutner
,
A.
Brandt
,
A.
Bolzmann
 et al.,
Nat. Photonics
1
,
336
(
2007
).
2.
P.
Emma
,
R.
Akre
,
J.
Arthur
,
R.
Bionta
,
C.
Bostedt
,
J.
Bozek
,
A.
Brachmann
,
P.
Bucksbaum
,
R.
Coffee
,
F.-J.
Decker
 et al.,
Nat. Photonics
4
,
641
(
2010
).
3.
T.
Ishikawa
,
H.
Aoyagi
,
T.
Asaka
,
Y.
Asano
,
N.
Azumi
,
T.
Bizen
,
H.
Ego
,
K.
Fukami
,
T.
Fukui
,
Y.
Furukawa
 et al.,
Nat. Photonics
6
,
540
(
2012
).
4.
H.
Thomas
,
A.
Helal
,
K.
Hoffmann
,
N.
Kandadai
,
J.
Keto
,
J.
Andreasson
,
B.
Iwan
,
M.
Seibert
,
N.
Timneanu
,
J.
Hajdu
 et al.,
Phys. Rev. Lett.
108
,
133401
(
2012
).
5.
T.
Gorkhover
,
M.
Adolph
,
D.
Rupp
,
S.
Schorb
,
S. W.
Epp
,
B.
Erk
,
L.
Foucar
,
R.
Hartmann
,
N.
Kimmel
,
K.-U.
Kühnel
 et al.,
Phys. Rev. Lett.
108
,
245005
(
2012
).
6.
T.
Tachibana
,
Z.
Jurek
,
H.
Fukuzawa
,
K.
Motomura
,
K.
Nagaya
,
S.
Wada
,
P.
Johnsson
,
M.
Siano
,
S.
Mondal
,
Y.
Ito
 et al.,
Sci. Rep.
5
,
10977
(
2015
).
7.
Z.
Jurek
,
B.
Ziaja
, and
R.
Santra
,
XMDYN Rev. 1.0360
(
CFEL, DESY
,
2013
).
8.
Z.
Jurek
,
G.
Oszlanyi
, and
G.
Faigel
,
Europhys. Lett.
65
,
491
(
2004
).
9.
B. F.
Murphy
,
T.
Osipov
,
Z.
Jurek
,
L.
Fang
,
S.-K.
Son
,
M.
Mucke
,
J. H. D.
Eland
,
V.
Zhaunerchyk
,
R.
Feifel
,
L.
Avaldi
 et al.,
Nat. Commun.
5
,
4281
(
2014
).
10.
C.
Peltz
,
C.
Varin
,
T.
Brabec
, and
T.
Fennel
,
Phys. Rev. Lett.
113
,
133401
(
2014
).
11.
V.
Saxena
,
Z.
Jurek
,
B.
Ziaja
, and
R.
Santra
,
High Energy Density Phys.
15
,
93
98
(
2015
).
12.
B.
Ziaja
,
A. R. B.
de Castro
,
E.
Weckert
, and
T.
Möller
,
Eur. Phys. J. D
40
,
465
480
(
2006
).
13.
W.
Lotz
,
Z. Phys.
206
,
205
211
(
1967
).
14.
S. H.
Müller
,
C.
Holland
,
G. R.
Tynan
,
J. H.
Yu
, and
V.
Naulin
,
Plasma Phys.: Controlled Fusion
51
,
105014
(
2009
).
15.
E. T.
Meier
and
U.
Shumlak
,
Phys. Plasma
19
,
072508
(
2012
).
16.
E.
Khomenko
,
M.
Collados
,
A.
Diaz
, and
N.
Vitas
,
Phys. Plasma
21
,
092901
(
2014
).
17.
J. J.
MacFarlane
,
I. E.
Golovkin
, and
P. R.
Woodruff
,
J. Quantum Spectrosc. Radiat. Transfer
99
,
381
(
2006
).
18.
B.
Ziaja
,
H.
Wabnitz
,
F.
Wang
,
E.
Weckert
, and
T.
Möller
,
Phys. Rev. Lett.
102
,
205002
(
2009
).
19.
B.
Ziaja
,
T.
Laarmann
,
H.
Wabnitz
,
F.
Wang
,
E.
Weckert
,
C.
Bostedt
, and
T.
Möller
,
New J. Phys.
11
,
103012
(
2009
).
20.
R. R.
Fäustlin
,
Th.
Bornath
,
T.
Döppner
,
S.
Düsterer
,
E.
Förster
,
C.
Fortmann
,
S. H.
Glenzer
,
S.
Göde
,
G.
Gregori
,
R.
Irsig
 et al.,
Phys. Rev. Lett.
104
,
125002
(
2010
).
21.
H.-K.
Chung
,
M. H.
Chen
,
W. L.
Morgan
,
Y.
Ralchenko
, and
R. W.
Lee
,
High Energy Density Phys.
1
,
3
12
(
2005
).
22.
R.
Fitzpatrick
,
Plasma Physics: An Introduction
(
CRC Press, Taylor and Francis Group
,
2014
).
23.
J. P.
Boris
,
A. M.
Landsberg
,
E. S.
Oran
, and
J. H.
Gardner
, LCPFCT-A flux-corrected transport algorithm for solving generalized continuity equations,
Report No. NRL/MR/6410–93-7192
, Naval Research Lab Washington DC,
1993
.
24.
J. P.
Boris
and
D. L.
Book
,
Methods Comput. Phys.
16
,
85
(
1976
).
25.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran
(
Cambridge University Press
,
New York
,
1992
).
26.
A.
Lapidus
,
J. Comput. Phys.
2
,
154
177
(
1967
).
27.
R.
Lohner
,
K.
Morgan
, and
J.
Peraire
,
Commun. Appl. Numer. Methods
1
,
141
147
(
1985
).
28.
C.
Siedschlag
and
J.-M.
Rost
,
Phys. Rev. Lett.
93
,
043402
(
2004
).
You do not currently have access to this content.