Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ion gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.

1.
M.
Tuszewski
, “
Field reversed configurations
,”
Nucl. Fusion
28
(
11
),
2033
(
1988
).
2.
A. C.
Kolb
,
C. B.
Dobbie
, and
H. R.
Griem
, “
Field mixing and associated neutron production in a plasma
,”
Phys. Rev. Lett.
3
,
5
7
(
1959
).
3.
T. S.
Green
, “
Evidence for the containment of a hot, dense plasma in a theta pinch
,”
Phys. Rev. Lett.
5
,
297
300
(
1960
).
4.
Hiroyuki
Maehara
,
Takuya
Shibayama
,
Shota
Notsu
,
Yuta
Notsu
,
Takashi
Nagao
,
Satoshi
Kusaba
,
Satoshi
Honda
,
Daisaku
Nogami
, and
Kazunari
Shibata
, “
Superflares on solar-type stars
,”
Nature
485
,
478
481
(
2012
).
5.
S. A.
Balbus
and
J. F.
Hawley
, “
Instability, turbulence, and enhanced transport in accretion disks
,”
Rev. Mod. Phys.
70
,
1
53
(
1998
).
6.
L. C.
Steinhauer
, “
Review of field-reversed configurations
,”
Phys. Plasmas
18
(
7
),
070501
(
2011
).
7.
N.
Rostoker
,
F.
Wessel
,
H.
Rahman
,
B. C.
Maglich
,
B.
Spivey
, and
A.
Fisher
, “
Magnetic fusion with high energy self-colliding ion beams
,”
Phys. Rev. Lett.
70
,
1818
1821
(
1993
).
8.
M. W.
Binderbauer
and
N.
Rostoker
, “
Turbulent transport in magnetic confinement: How to avoid it
,”
J. Plasma Phys.
56
,
451
465
(
1996
).
9.
D. C.
Barnes
,
J. L.
Schwarzmeier
,
H. R.
Lewis
, and
C. E.
Seyler
, “
Kinetic tilting stability of field-reversed configurations
,”
Phys. Fluids
29
(
8
),
2616
2629
(
1986
).
10.
H.
Naitou
,
T.
Kamimura
, and
J. M.
Dawson
, “
Kinetic effects on the convective plasma diffusion and the heat transport
,”
J. Phys. Soc. Jpn.
46
(
1
),
258
265
(
1979
).
11.
R.
Horiuchi
and
T.
Sato
, “
Full magnetohydrodynamic simulation of the tilting instability in a field-reversed configuration
,”
Phys. Fluids B
1
(
3
),
581
590
(
1989
).
12.
W. W.
Heidbrink
and
G. J.
Sadler
, “
The behaviour of fast ions in tokamak experiments
,”
Nucl. Fusion
34
(
4
),
535
(
1994
).
13.
M. W.
Binderbauer
,
H. Y.
Guo
,
M.
Tuszewski
,
S.
Putvinski
,
L.
Sevier
,
D.
Barnes
,
N.
Rostoker
,
M. G.
Anderson
,
R.
Andow
,
L.
Bonelli
,
F.
Brandi
,
R.
Brown
,
D. Q.
Bui
,
V.
Bystritskii
,
F.
Ceccherini
,
R.
Clary
,
A. H.
Cheung
,
K. D.
Conroy
,
B. H.
Deng
,
S. A.
Dettrick
,
J. D.
Douglass
,
P.
Feng
,
L.
Galeotti
,
E.
Garate
,
F.
Giammanco
,
F. J.
Glass
,
O.
Gornostaeva
,
H.
Gota
,
D.
Gupta
,
S.
Gupta
,
J. S.
Kinley
,
K.
Knapp
,
S.
Korepanov
,
M.
Hollins
,
I.
Isakov
,
V. A.
Jose
,
X. L.
Li
,
Y.
Luo
,
P.
Marsili
,
R.
Mendoza
,
M.
Meekins
,
Y.
Mok
,
A.
Necas
,
E.
Paganini
,
F.
Pegoraro
,
R.
Pousa-Hijos
,
S.
Primavera
,
E.
Ruskov
,
A.
Qerushi
,
L.
Schmitz
,
J. H.
Schroeder
,
A.
Sibley
,
A.
Smirnov
,
Y.
Song
,
X.
Sun
,
M. C.
Thompson
,
A. D.
Van Drie
,
J. K.
Walters
, and
M. D.
Wyman
, “
Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high-β compact toroids
,”
Phys. Rev. Lett.
105
,
045003
(
2010
).
14.
M.
Tuszewski
,
A.
Smirnov
,
M. C.
Thompson
,
T.
Akhmetov
,
A.
Ivanov
,
R.
Voskoboynikov
,
D. C.
Barnes
,
M. W.
Binderbauer
,
R.
Brown
,
D. Q.
Bui
 et al, “
A new high performance field reversed configuration operating regime in the C-2 device
,”
Phys. Plasmas
19
(
5
),
056108
(
2012
).
15.
H. Y.
Guo
,
M. W.
Binderbauer
,
T.
Tajima
,
R. D.
Milroy
,
L. C.
Steinhauer
,
X.
Yang
,
E. G.
Garate
,
H.
Gota
,
S.
Korepanov
,
A.
Necas
,
T.
Roche
,
A.
Smirnov
, and
E.
Trask
, “
Achieving a long-lived high-beta plasma state by energetic beam injection
,”
Nat. Commun.
6
,
6897
(
2015
).
16.
M. W.
Binderbauer
,
T.
Tajima
,
L. C.
Steinhauer
,
E.
Garate
,
M.
Tuszewski
,
L.
Schmitz
,
H. Y.
Guo
,
A.
Smirnov
,
H.
Gota
,
D.
Barnes
,
B. H.
Deng
,
M. C.
Thompson
,
E.
Trask
,
X.
Yang
,
S.
Putvinski
,
N.
Rostoker
,
R.
Andow
,
S.
Aefsky
,
N.
Bolte
,
D. Q.
Bui
,
F.
Ceccherini
,
R.
Clary
,
A. H.
Cheung
,
K. D.
Conroy
,
S. A.
Dettrick
,
J. D.
Douglass
,
P.
Feng
,
L.
Galeotti
,
F.
Giammanco
,
E.
Granstedt
,
D.
Gupta
,
S.
Gupta
,
A. A.
Ivanov
,
J. S.
Kinley
,
K.
Knapp
,
S.
Korepanov
,
M.
Hollins
,
R.
Magee
,
R.
Mendoza
,
Y.
Mok
,
A.
Necas
,
S.
Primavera
,
M.
Onofri
,
D.
Osin
,
N.
Rath
,
T.
Roche
,
J.
Romero
,
J. H.
Schroeder
,
L.
Sevier
,
A.
Sibley
,
Y.
Song
,
A. D.
Van Drie
,
J. K.
Walters
,
W.
Waggoner
,
P.
Yushmanov
,
K.
Zhai
, and
TAE Team
, “
A high performance field-reversed configuration
,”
Phys. Plasmas
22
(
5
),
056110
(
2015
).
17.
S.
Hamasaki
and
D. L.
Book
, “
Numerical simulation of the anomalous transport process in radially compressed reversed-field configurations
,”
Nucl. Fusion
20
(
3
),
289
(
1980
).
18.
M.
Tuszewski
and
R. K.
Linford
, “
Particle transport in field-reversed configurations
,”
Phys. Fluids
25
(
5
),
765
774
(
1982
).
19.
A. L.
Hoffman
,
R. D.
Milroy
, and
L. C.
Steinhauer
, “
Poloidal flux loss in a field-reversed theta pinch
,”
Appl. Phys. Lett.
41
,
31
33
(
1982
).
20.
A. W.
Carlson
, “
A search for lower-hybrid-drift fluctuations in a field-reversed configuration using CO2 heterodyne scattering
,”
Phys. Fluids
30
(
5
),
1497
1509
(
1987
).
21.
D.
Winske
and
P. C.
Liewer
, “
Particle simulation studies of the lower hybrid drift instability
,”
Phys. Fluids
21
(
6
),
1017
1025
(
1978
).
22.
J. U.
Brackbill
,
D. W.
Forslund
,
K. B.
Quest
, and
D.
Winske
, “
Nonlinear evolution of the lower-hybrid drift instability
,”
Phys. Fluids
27
(
11
),
2682
2693
(
1984
).
23.
N. T.
Gladd
,
A. G.
Sgro
, and
D. W.
Hewett
, “
Microstability properties of the sheath region of a field-reversed configuration
,”
Phys. Fluids
28
(
7
),
2222
2234
(
1985
).
24.
N. T.
Gladd
,
J. F.
Drake
,
C. L.
Chang
, and
C. S.
Liu
, “
Electron temperature gradient driven microtearing mode
,”
Phys. Fluids
23
(
6
),
1182
1192
(
1980
).
25.
R.
Farengo
,
P. N.
Guzdar
, and
Y. C.
Lee
, “
Collisionless electron temperature gradient driven instability in field reversed configurations
,”
Phys. Fluids B
1
(
11
),
2181
2185
(
1989
).
26.
N. A.
Krall
, “
Low-frequency stability for field reversed configuration parameters
,”
Phys. Fluids
30
(
3
),
878
883
(
1987
).
27.
D. E.
Hastings
and
J. E.
McCune
, “
The high universal drift mode
,”
Phys. Fluids
25
(
3
),
509
517
(
1982
).
28.
R. K.
Linford
, in
Unconventional Approaches to Fusion
, edited by
B.
Brunelli
and
G. G.
Leotta
(
Plenum Press
,
New York and London
,
1982
), Vol. 13, p.
463
.
29.
A. L.
Hoffman
and
R. D.
Milroy
, “
Particle lifetime scaling in field-reversed configurations based on lower-hybrid-drift resistivity
,”
Phys. Fluids
26
(
11
),
3170
3172
(
1983
).
30.
S. P.
Auerbach
and
W. C.
Condit
, “
Classical diffusion in a field-reversed mirror
,”
Nucl. Fusion
21
(
8
),
927
(
1981
).
31.
K.
Nguyen
and
T.
Kammash
, “
Classical transport coefficients in a field-reversed configuration
,”
Plasma Phys.
24
(
2
),
177
(
1982
).
32.
R. A.
Clemente
and
C. E.
Grillo
, “
Internal tilting and classical transport for field-reversed configurations based on the Maschke-Hernegger solution
,”
Phys. Fluids
27
(
3
),
658
660
(
1984
).
33.
R. A.
Clemente
and
E. M.
Freire
, “
Classical particle-diffusion time for analytical compact tori equilibria
,”
Plasma Phys. Controlled Fusion
28
(
7
),
951
(
1986
).
34.
Y.
Aso
,
S.
Himeno
, and
K.
Hirano
, “
Experimental studies on energy transport in a reversed-field theta pinch
,”
Nucl. Fusion
23
(
6
),
751
(
1983
).
35.
D. J.
Rej
and
M.
Tuszewski
, “
A zero-dimensional transport model for field-reversed configurations
,”
Phys. Fluids
27
(
6
),
1514
1520
(
1984
).
36.
S.
Hamada
, “
A model of equilibrium transport and evolution of field reversed configurations
,”
Nucl. Fusion
26
(
6
),
729
(
1986
).
37.
D. C.
Quimby
,
A. L.
Hoffman
, and
G. C.
Vlases
, “
Linus cycle calculations including plasma transport and resistive flux loss
,”
Nucl. Fusion
21
(
5
),
553
(
1981
).
38.
E. J.
Caramana
, “
The long-time evolution approximation for a quasi-one-dimensional plasma system
,”
Phys. Fluids
28
(
12
),
3557
3566
(
1985
).
39.
K. A.
Werley
, “
One-and-a-quarter-dimensional transport modeling of the field-reversed configuration
,”
Phys. Fluids
30
(
7
),
2129
2138
(
1987
).
40.
D. E.
Shumaker
, “
Transport simulation of a field-reversed configuration plasma
,”
Fusion Science and Technology
13
(4),
555
576
(
1988
).
41.
I.
Holod
,
W. L.
Zhang
,
Y.
Xiao
, and
Z.
Lin
, “
Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry
,”
Phys. Plasmas
16
(
12
),
122307
(
2009
).
42.
Z.
Lin
,
T. S.
Hahm
,
W. W.
Lee
,
W. M.
Tang
, and
R. B.
White
, “
Turbulent transport reduction by zonal flows: Massively parallel simulations
,”
Science
281
,
1835
(
1998
).
43.
Y.
Xiao
and
Z.
Lin
, “
Turbulent transport of trapped-electron modes in collisionless plasmas
,”
Phys. Rev. Lett.
103
(
8
),
085004
(
2009
).
44.
W.
Zhang
,
Z.
Lin
, and
L.
Chen
, “
Transport of energetic particles by microturbulence in magnetized plasmas
,”
Phys. Rev. Lett.
101
(
9
),
095001
(
2008
).
45.
H. S.
Zhang
,
Z.
Lin
, and
I.
Holod
, “
Nonlinear frequency oscillation of Alfvén eigenmodes in fusion plasmas
,”
Phys. Rev. Lett.
109
(
2
),
025001
(
2012
).
46.
Z.
Wang
,
Z.
Lin
,
I.
Holod
,
W. W.
Heidbrink
,
B.
Tobias
,
M.
Van Zeeland
, and
M. E.
Austin
, “
Radial localization of toroidicity-induced Alfvén eigenmodes
,”
Phys. Rev. Lett.
111
(
14
),
145003
(
2013
).
47.
J.
McClenaghan
,
Z.
Lin
,
I.
Holod
,
W.
Deng
, and
Z.
Wang
, “
Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode
,”
Phys. Plasmas
21
(
12
),
122519
(
2014
).
48.
D.
Liu
,
W.
Zhang
,
J.
McClenaghan
,
J.
Wang
, and
Z.
Lin
, “
Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. II. Resistive tearing mode
,”
Phys. Plasmas
21
(
12
),
122520
(
2014
).
49.
R. B.
White
,
The Theory of Toroidally Confined Plasmas
, 3rd ed. (
Imperial College Press
,
London
,
2014
).
50.
W. D.
D'haeseleer
,
W. N. G.
Hitchon
,
J. L.
Shohet
,
J. D.
Callen
, and
D. W.
Kerst
,
Flux Coordinates and Magnetic Field Structure. A Guide to a Fundamental Tool of Plasma Theory
(
Springer-Verlag
,
Berlin Heidelberg
,
1991
).
51.
A. Yu.
Chirkov
and
V. I.
Khvesyuk
, “
Electromagnetic drift instabilities in high-plasma under conditions of a field reversed configuration
,”
Phys. Plasmas
17
(
1
),
012105
(
2010
).
52.
I.
Holod
and
Z.
Lin
, “
Verification of electromagnetic fluid-kinetic hybrid electron model in global gyrokinetic particle simulation
,”
Phys. Plasmas
20
(
3
),
032309
(
2013
).
53.
I.
Holod
,
D. P.
Fulton
, and
Z.
Lin
, “
Microturbulence in DIII-D tokamak pedestal. II. Electromagnetic instabilities
,”
Nucl. Fusion
55
(
9
),
093020
(
2015
).
54.
J.
Bao
,
Z.
Lin
,
A.
Kuley
, and
Z. X.
Wang
, “
Electromagnetic particle simulation model for nonlinear processes of lower hybrid waves in fusion plasmas
,” (unpublished).
55.
M.
Okamoto
,
T.
Tajima
,
N.
Rostoker
,
B.
Coppi
,
A.
Ishida
, and
Y.
Nakamura
, “
Summary
,”
AIP Conf. Proc.
311
(
1
),
325
326
(
1994
).
56.
A. H.
Boozer
, “
Plasma equilibrium with rational magnetic surfaces
,”
Phys. Fluids
24
(
11
),
1999
2003
(
1981
).
57.
L.
Galeotti
,
D. C.
Barnes
,
F.
Ceccherini
, and
F.
Pegoraro
, “
Plasma equilibria with multiple ion species: Equations and algorithm
,”
Phys. Plasmas
18
(
8
),
082509
(
2011
).
58.
W. W.
Lee
, “
Gyrokinetic approach in particle simulation
,”
Phys. Fluids
26
(
2
),
556
562
(
1983
).
59.
T.
Tajima
,
Computational Plasma Physics—With Applications to Fusion and Astrophysics
, Benjamin Frontier Series (
Addison-Wesley
,
Reading, MA
,
1989
).
60.
A. M.
Dimits
and
W. W.
Lee
, “
Partially linearized algorithms in gyrokinetic particle simulation
,”
J. Comput. Phys.
107
(
2
),
309
323
(
1993
).
61.
S. E.
Parker
and
W. W.
Lee
, “
A fully nonlinear characteristic method for gyrokinetic simulation
,”
Phys. Fluids B
5
(
1
),
77
86
(
1993
).
62.
J. K.
Koga
and
T.
Tajima
, “
The δf algorithm for beam dynamics
,”
J. Comput. Phys.
116
(
2
),
314
329
(
1995
).
63.
Y.
Xiao
,
I.
Holod
,
Z. X.
Wang
,
Z.
Lin
, and
T.
Zhang
, “
Gyrokinetic particle simulation of microturbulence for general magnetic geometry and experimental profiles
,”
Phys. Plasmas
22
(
2
),
022516
(
2015
).
64.
W. W.
Lee
, “
Gyrokinetic particle simulation model
,”
J. Comput. Phys.
72
(
1
),
243
269
(
1987
).
65.
S.
Balay
,
S.
Abhyankar
,
M. F.
Adams
,
J.
Brown
,
P.
Brune
,
K.
Buschelman
,
L.
Dalcin
,
V.
Eijkhout
,
W. D.
Gropp
,
D.
Kaushik
,
M. G.
Knepley
,
L.
Curfman McInnes
,
K.
Rupp
,
B. F.
Smith
,
S.
Zampini
, and
H.
Zhang
, Portable, Extensible Toolkit for Scientific Computation, PETSC,
2014
, http://www.mcs.anl.gov/petsc.
66.
C. K.
Lau
,
D. P.
Fulton
,
I.
Holod
,
Z.
Lin
,
L.
Schmitz
,
T.
Tajima
, and
M. W.
Binderbauer
, “
Electrostatic Drift-wave Instability in Field-Reversed Configuration
,” (unpublished).
67.
Z.
Lin
,
W. M.
Tang
, and
W. W.
Lee
, “
Gyrokinetic particle simulation of neoclassical transport
,”
Phys. Plasmas
2
(
8
),
2975
2988
(
1995
).
68.
L.
Schmitz
,
D.
Fulton
,
E.
Ruskov
,
C.
Lau
,
B. H.
Deng
,
T.
Tajima
,
M. W.
Binderbauer
,
I.
Holod
,
Z.
Lin
,
H.
Gota
,
M.
Tuszewski
,
S. A.
Dettrick
,
L. C.
Steinhauer
,
D.
Gupta
,
W. A.
Peebles
,
T.
Akhmetov
,
J.
Douglass
,
E.
Garate
,
A.
Ivanov
,
S.
Korepanov
,
A.
Smirnov
,
M. C.
Thompson
,
E.
Trask
, and
the TAE Team
, “
First evidence of suppressed ion-scale turbulence in a hot high-β plasma
,”
Nat. Commun.
(submitted).
You do not currently have access to this content.