This paper shows that several known properties of the Yukawa system can be derived from the isomorph theory, which applies to any system that has strong correlations between its virial and potential-energy equilibrium fluctuations. Such “Roskilde-simple” systems have a simplified thermodynamic phase diagram deriving from the fact that they have curves (isomorphs) along which structure and dynamics in reduced units are invariant to a good approximation. We show that the Yukawa system has strong virial potential-energy correlations and identify its isomorphs by two different methods. One method, the so-called direct isomorph check, identifies isomorphs numerically from jumps of relatively small density changes (here 10%). The second method identifies isomorphs analytically from the pair potential. The curves obtained by the two methods are close to each other; these curves are confirmed to be isomorphs by demonstrating the invariance of the radial distribution function, the static structure factor, the mean-square displacement as a function of time, and the incoherent intermediate scattering function. Since the melting line is predicted to be an isomorph, the theory provides a derivation of a known approximate analytical expression for this line in the temperature-density phase diagram. The paper's results give the first demonstration that the isomorph theory can be applied to systems like dense colloidal suspensions and strongly coupled dusty plasmas.

2.
H.
Yukawa
,
Proc. Phys.-Math. Soc. Jpn.
17
,
48
(
1935
).
3.
P.
Debye
and
E.
Hückel
,
Phys. Z.
24
,
185
(
1923
).
4.
B.
Derjaguin
and
L.
Landau
,
Acta Physicochim. U.R.S.S.
14
,
633
(
1941
).
5.
E. J. W.
Verwey
and
J. T. G.
Overbeek
,
Theory of the Stability of Lyophobic Colloids
(
Elsevier
,
1948
).
6.
A.-P.
Hynninen
and
M.
Dijkstra
,
Phys. Rev. E
68
,
021407
(
2003
).
7.
S. A.
Khrapak
,
A. V.
Ivlev
, and
G. E.
Morfill
,
Phys. Plasmas
17
,
042107
(
2010
).
8.
V. E.
Fortov
,
A. V.
Ivlev
,
S. A.
Khrapak
,
A. G.
Khrapak
, and
G. E.
Morfill
,
Phys. Rep.
421
,
1
(
2005
).
9.
G. E.
Morfill
and
A. V.
Ivlev
,
Rev. Mod. Phys.
81
,
1353
(
2009
).
10.
P. N.
Pusey
and
W.
van Megen
,
Nature
320
,
340
(
1986
).
11.
H.
Ikezi
,
Phys. Fluids
29
,
1764
(
1986
).
12.
M. O.
Robbins
,
K.
Kremer
, and
G. S.
Grest
,
J. Chem. Phys.
88
,
3286
(
1988
).
13.
E. J.
Meijer
and
D.
Frenkel
,
J. Chem. Phys.
94
,
2269
(
1991
).
14.
R. T.
Farouki
and
S.
Hamaguchi
,
Appl. Phys. Lett.
61
,
2973
(
1992
).
15.
J. H.
Chu
and
I.
Lin
,
Phys. Rev. Lett.
72
,
4009
(
1994
).
16.
H. M.
Thomas
,
G. E.
Morfill
,
V.
Demmel
,
J.
Goree
,
B.
Feuerbacher
, and
D.
Möhlmann
,
Phys. Rev. Lett.
73
,
652
(
1994
).
17.
K. N.
Dzhumagulova
,
T. S.
Ramazanov
, and
R. U.
Masheeva
,
Phys. Plasmas
20
,
113702
(
2013
).
18.
A.
Yazdi
,
A. V.
Ivlev
,
S. A.
Khrapak
,
H. M.
Thomas
,
G. E.
Morfill
,
H.
Löwen
,
A.
Wysocki
, and
M.
Sperl
,
Phys. Rev. E
89
,
063105
(
2014
).
19.
S.
Hamaguchi
,
R. T.
Farouki
, and
D. H. E.
Dubin
,
Phys. Rev. E
56
,
4671
(
1997
).
20.
O. S.
Vaulina
and
S. A.
Khrapak
,
J. Exp. Theor. Phys.
90
,
287
(
2000
).
21.
O. S.
Vaulina
,
S. A.
Khrapak
, and
G. E.
Morfill
,
Phys. Rev. E
66
,
016404
(
2002
).
22.
F. A.
Lindemann
,
Phys. Z.
11
,
609
(
1910
).
23.
J. J.
Gilvarry
,
Phys. Rev.
102
,
308
(
1956
).
24.
T. S.
Ingebrigtsen
,
T. B.
Schrøder
, and
J. C.
Dyre
,
Phys. Rev. X
2
,
011011
(
2012
).
25.
J. C.
Dyre
,
J. Phys. Chem. B
118
,
10007
(
2014
).
26.
K.
Kremer
,
G. S.
Grest
, and
M. O.
Robbins
,
J. Phys. A
20
,
L181
(
1987
).
27.
H.
Löwen
and
G.
Szamel
,
J. Phys. Condens. Matter
5
,
2295
(
1993
).
28.
Y.
Rosenfeld
,
Phys. Rev. E
62
,
7524
(
2000
).
29.
Y.
Rosenfeld
,
J. Phys. Condens. Matter
13
,
L39
(
2001
).
30.
H.
Ohta
and
S.
Hamaguchi
,
Phys. Plasmas
7
,
4506
(
2000
).
31.
J.
Daligault
,
Phys. Rev. E
86
,
047401
(
2012
).
32.
S. A.
Khrapak
,
O. S.
Vaulina
, and
G. E.
Morfill
,
Phys. Plasmas
19
,
034503
(
2012
).
33.
G.
Faussurier
,
S. B.
Libby
, and
P. L.
Silvestrelli
,
High Energy Density Phys.
12
,
21
(
2014
).
34.
U. R.
Pedersen
,
T.
Christensen
,
T. B.
Schrøder
, and
J. C.
Dyre
,
Phys. Rev. E
77
,
011201
(
2008
).
35.
U. R.
Pedersen
,
N. P.
Bailey
,
T. B.
Schrøder
, and
J. C.
Dyre
,
Phys. Rev. Lett.
100
,
015701
(
2008
).
36.
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
129
,
184507
(
2008
).
37.
A. A.
Veldhorst
,
L.
Bøhling
,
J. C.
Dyre
, and
T. B.
Schrøder
,
Eur. Phys. J. B
85
,
21
(
2012
).
38.
A. K.
Bacher
and
J. C.
Dyre
,
Colloid Polym. Sci.
292
,
1971
(
2014
).
39.
T. S.
Ingebrigtsen
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Phys. Chem. B
116
,
1018
(
2012
).
40.
A. A.
Veldhorst
,
J. C.
Dyre
, and
T. B.
Schrøder
,
J. Chem. Phys.
141
,
054904
(
2014
).
41.
L.
Separdar
,
N. P.
Bailey
,
T. B.
Schrøder
,
S.
Davatolhagh
, and
J. C.
Dyre
,
J. Chem. Phys.
138
,
154505
(
2013
).
42.
D. E.
Albrechtsen
,
A. E.
Olsen
,
U. R.
Pedersen
,
T. B.
Schrøder
, and
J. C.
Dyre
,
Phys. Rev. B
90
,
094106
(
2014
).
43.
A.
Malins
,
J.
Eggers
, and
C. P.
Royall
,
J. Chem. Phys.
139
,
234505
(
2013
).
44.
E. H.
Abramson
,
J. Phys. Chem. B
118
,
11792
(
2014
).
45.
A.
Henao
,
S.
Pothoczki
,
M.
Canales
,
E.
Guàrdia
, and
L. C.
Pardo
,
J. Mol. Liq.
190
,
121
(
2014
).
46.
S.
Pieprzyk
,
D. M.
Heyes
, and
A. C.
Braka
,
Phys. Rev. E
90
,
012106
(
2014
).
47.
S.
Prasad
and
C.
Chakravarty
,
J. Chem. Phys.
140
,
164501
(
2014
).
48.
J. W. P.
Schmelzer
and
T. V.
Tropin
,
J. Non. Cryst. Solids
407
,
170
(
2015
).
49.
U.
Buchenau
,
J. Non. Cryst. Solids
407
,
179
(
2015
).
50.
D. M.
Heyes
,
D.
Dini
, and
A. C.
Braka
,
Phys. Status Solidi B
252
,
1514
(
2015
).
51.
T. S.
Ingebrigtsen
,
J. R.
Errington
,
T. M.
Truskett
, and
J. C.
Dyre
,
Phys. Rev. Lett.
111
,
235901
(
2013
).
52.
T. S.
Ingebrigtsen
and
J. C.
Dyre
,
Soft Matter
10
,
4324
(
2014
).
53.
E.
Lerner
,
N. P.
Bailey
, and
J. C.
Dyre
,
Phys. Rev. E
90
,
052304
(
2014
).
54.
N.
Gnan
,
T. B.
Schrøder
,
U. R.
Pedersen
,
N. P.
Bailey
, and
J. C.
Dyre
,
J. Chem. Phys.
131
,
234504
(
2009
).
55.
C. M.
Roland
,
S.
Hensel-Bielowka
,
M.
Paluch
, and
R.
Casalini
,
Rep. Prog. Phys.
68
,
1405
(
2005
).
56.
L.
Bøhling
,
T. S.
Ingebrigtsen
,
A.
Grzybowski
,
M.
Paluch
,
J. C.
Dyre
, and
T. B.
Schrøder
,
New J. Phys.
14
,
113035
(
2012
).
57.
Y.
Rosenfeld
,
Phys. Rev. A
15
,
2545
(
1977
).
58.
T. S.
Ingebrigtsen
,
A. A.
Veldhorst
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
139
,
171101
(
2013
).
59.
Y.
Rosenfeld
and
P.
Tarazona
,
Mol. Phys.
95
,
141
(
1998
).
60.
K. Y.
Sanbonmatsu
and
M. S.
Murillo
,
Phys. Rev. Lett.
86
,
1215
(
2001
).
61.
J.
Daligault
,
Phys. Rev. Lett.
96
,
065003
(
2006
).
62.
A. K.
Bacher
,
T. B.
Schrøder
, and
J. C.
Dyre
,
Nat. Commun.
5
,
5424
(
2014
).
63.
T. B.
Schrøder
and
J. C.
Dyre
,
J. Chem. Phys.
141
,
204502
(
2014
).
64.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
, 1st ed. (
Clarendon
,
Oxford
,
1987
).
65.
J. C.
Dyre
,
Phys. Rev. E
88
,
042139
(
2013
).
66.
T. S.
Ingebrigtsen
,
L.
Bøhling
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
136
,
061102
(
2012
).
67.
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
129
,
184508
(
2008
).
68.
Roskilde University Molecular Dynamics, http://rumd.org.
69.
S.
Toxvaerd
and
J. C.
Dyre
,
J. Chem. Phys.
134
,
081102
(
2011
).
70.
J. P.
Hansen
,
Phys. Rev. A
8
,
3096
(
1973
).
71.
K.-C.
Ng
,
J. Chem. Phys.
61
,
2680
(
1974
).
72.
W. L.
Slattery
,
G. D.
Doolen
, and
H. E.
DeWitt
,
Phys. Rev. A
21
,
2087
(
1980
).
73.
L.
Bøhling
,
N. P.
Bailey
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
140
,
124510
(
2014
).
74.
N. P.
Bailey
,
L.
Bøhling
,
A. A.
Veldhorst
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
139
,
184506
(
2013
).
75.
S. A.
Khrapak
and
H. M.
Thomas
,
Phys. Rev. E
91
,
023108
(
2015
).
76.
S. A.
Khrapak
,
N. P.
Kryuchkov
,
S. O.
Yurchenko
, and
H. M.
Thomas
,
J. Chem. Phys.
142
,
194903
(
2015
).
77.
S. A.
Khrapak
,
Phys. Plasmas
20
,
054501
(
2013
).
78.
S. M.
Stishov
,
JETP Lett.
67
,
90
(
1998
).
You do not currently have access to this content.