This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n-/ne. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numerical experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.

1.
J. P.
Boeuf
,
G. J. M.
Hagelaar
,
P.
Sarrailh
,
G.
Fubiani
, and
N.
Kohen
,
Plasma Sources Sci. Technol.
20
,
015002
(
2011
).
2.
R.
Hemsworth
,
H.
Decamps
,
J.
Graceffa
,
B.
Schunke
,
M.
Tanaka
,
M.
Dremel
,
A.
Tanga
,
H. P. L.
De Esch
,
F.
Geli
,
J.
Milnes
,
T.
Inoue
,
D.
Marcuzzi
,
P.
Sonato
, and
P.
Zaccaria
,
Nucl. Fusion
49
,
045006
(
2009
).
3.
F.
Taccogna
,
S.
Longo
,
M.
Capitelli
, and
R.
Schneider
,
IEEE Trans. Plasma Sci.
36
,
1589
(
2008
).
4.
A.
Aanesland
,
A.
Meige
, and
P.
Chabert
,
J. Phys: Conf. Ser.
162
,
012009
(
2009
).
5.
W.
Kim
,
H.
Do
,
M. G.
Mungal
, and
M. A.
Cappelli
,
Appl. Phys. Lett.
91
,
181501
(
2007
).
6.
H. W.
Lee
,
G. Y.
Park
,
Y. S.
Seo
,
Y. H.
Im
,
S. B.
Shim
, and
H. J.
Lee
,
J. Phys. D: Appl. Phys.
44
,
053001
(
2011
).
7.
D. J.
Economou
,
Appl. Surf. Sci.
253
,
6672
(
2007
).
8.
J.
Bredin
,
P.
Chabert
, and
A.
Aanesland
,
Phys. Plasmas
21
,
123502
(
2014
).
9.
A. G.
Nikitin
,
F.
El Balghiti
, and
M.
Bacal
,
Plasma Sources Sci. Technol.
5
,
37
(
1996
).
10.
R. L. F.
Boyd
and
J. B.
Thompson
,
Proc. R. Soc. London, Ser. A
252
,
102
(
1959
).
11.
P.
Chabert
,
T. E.
Sheridan
,
R. W.
Boswell
, and
J.
Perrin
,
Plasma Sources Sci. Technol.
8
,
561
(
1999
).
12.
M.
Bacal
,
Rev. Sci. Instrum.
71
,
3981
(
2000
).
13.
P.
Devynck
,
J.
Auvray
,
M.
Bacal
,
P.
Berlemont
,
J.
Bruneteau
,
R.
Leroy
, and
R. A.
Stern
,
Rev. Sci. Instrum.
60
,
2873
(
1989
).
14.
R. A.
Stern
,
P.
Devynck
,
M.
Bacal
,
P.
Berlemont
, and
F.
Hillion
,
Phys. Rev. A
41
,
3307
(
1990
).
15.
M.
Nishiura
,
M.
Sasao
,
M.
Wada
, and
M.
Bacal
,
Phys. Rev. E
63
,
036408
(
2001
).
16.
M.
Bacal
and
G. W.
Hamilton
,
Phys. Rev. Lett.
42
,
1538
(
1979
).
17.
J.
Conway
,
N.
Sirse
,
S. K.
Karkari
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
19
,
065002
(
2010
).
18.
N.
Sirse
,
S. K.
Karkari
,
M. A.
Mujawar
,
J.
Conway
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
20
,
055003
(
2011
).
19.
N.
Sirse
,
S. K.
Karkari
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
24
,
022001
(
2015
).
20.
A.
O'Keefe
and
D. A. G.
Deacon
,
Rev. Sci. Instrum.
59
,
2544
(
1988
).
21.
F.
Grangeon
,
C.
Monard
,
J.-L.
dorier
,
A. A.
Howling
,
C.
Hollenstein
,
D.
Romanini
, and
N.
Sadeghi
,
Plasma Sources Sci. Technol.
8
,
448
(
1999
).
22.
E.
Quandt
,
I.
Kraemer
, and
H. F.
Döbele
,
Europhys. Lett.
45
,
32
(
1999
).
23.
J.-P.
Booth
,
C. S.
Corr
,
G. A.
Curley
,
J.
Jolly
,
J.
Guillon
, and
T.
Földes
,
Appl. Phys. Lett.
88
,
151502
(
2006
).
24.
U.
Fantz
and
D.
Wunderlich
,
New J. Phys.
8
,
301
(
2006
).
25.
J. W.
Bradley
,
R.
Dodd
,
S.-D.
You
,
N.
Sirse
, and
S. K.
Karkari
,
J. Vac. Sci. Technol., A
29
,
031305
(
2011
).
26.
S.
Christ-Koch
,
U.
Fantz
,
M.
Berger
, and
NNBI Team
,
Plasma Sources Sci. Technol.
18
,
025003
(
2009
).
27.
D.
Tskhakaya
,
K.
Matyash
,
R.
Schneider
, and
F.
Taccogna
,
Contrib. Plasma Phys.
47
(
8–9
),
563
594
(
2007
).
28.
L.
Friedland
,
C. I.
Ciubotariu
, and
M.
Bacal
,
Phys. Rev. E
49
,
4353
(
1994
).
29.
F.
El Balghiti-Sube
,
F. G.
Baksht
, and
M.
Bacal
,
Rev. Sci. Instrum.
67
,
2221
(
1996
).
30.
N.
Oudini
,
F.
Taccogna
,
A.
Bendib
, and
A.
Aanesland
,
Phys. Plasmas
21
,
063515
(
2014
).
31.
M.
Capitelli
,
M.
Cacciatore
,
R.
Celiberto
,
O.
De Pascale
,
P.
Diomede
,
F.
Esposito
,
A.
Gicquel
,
C.
Gorse
,
K.
Hassouni
,
A.
Laricchiuta
,
S.
Longo
,
D.
Pagano
, and
M.
Rutigliano
,
Nucl. Fusion
46
,
S260
(
2006
).
32.
L. A.
Pinnaduwage
and
L. G.
Christophorou
,
Phys. Rev. Lett.
70
,
754
(
1993
).
33.
T.
Teichmann
,
C.
Külling
,
K.
Dittmann
,
K.
Matyash
,
R.
Schneider
, and
J.
Meichsner
,
Phys. Plasmas
20
,
113509
(
2013
).
34.
C. S.
Corr
,
S.
Gomez
, and
W. G.
Graham
,
Plasma Sources Sci. Technol.
21
,
055024
(
2012
).
35.
F.
Perkins
and
E. E.
Salpeter
,
Phys. Rev.
139
,
A55
(
1965
).
36.
M.
Nogochi
,
T.
Hirao
,
K.
Sakurauchi
,
Y.
Yamagata
,
H.
Naitou
,
M.
Yagi
,
K.
Uchino
, and
K.
Muraoka
,
J. Plasma Fusion Res.
79
,
274
(
2003
).
37.
M.
Nishiura
,
M.
Sasao
, and
M.
Bacal
,
J. Appl. Phys.
83
,
2944
(
1998
).
You do not currently have access to this content.