We have observed that the disparate scale nonlinear interactions between the high-frequency (∼0.4 MHz) electron temperature gradient (ETG) mode and the ion-scale low-frequency fluctuations (∼kHz) were enhanced when the amplitude of the ETG mode exceeded a certain threshold. The dynamics of nonlinear coupling between the ETG mode and the drift wave (DW) mode has already been reported [C. Moon, T. Kaneko, and R. Hatakeyama, Phys. Rev. Lett. (2013)]. Here, we have newly observed that another low-frequency fluctuation with f3.6 kHz, i.e., the flute mode, was enhanced, corresponding to the saturation of the DW mode growth. Specifically, the bicoherence between the flute mode and the DW mode reaches a significant level when the ∇Te/Te strength exceeded 0.54 cm−1. Thus, it is shown that the ETG mode energy was transferred to the DW mode, and then the energy was ultimately transferred to the flute mode, which was triggered by the disparate scale nonlinear interactions between the ETG and ion-scale low-frequency modes.

1.
E.
Mazzucato
,
D. R.
Smith
,
R. E.
Bell
,
S. M.
Kaye
,
J. C.
Hosea
,
B. P.
LeBlanc
,
J. R.
Wilson
,
P. M.
Ryan
,
C. W.
Domier
,
N. C.
Luhmann
, Jr.
,
H.
Yuh
,
W.
Lee
, and
H.
Park
,
Phys. Rev. Lett.
101
,
075001
(
2008
).
2.
V.
Sokolov
and
A. K.
Sen
,
Phys. Rev. Lett.
107
,
155001
(
2011
).
3.
S. K.
Mattoo
,
S. K.
Singh
,
L. M.
Awasthi
,
R.
Singh
, and
P. K.
Kaw
,
Phys. Rev. Lett.
108
,
255007
(
2012
).
4.
J. C.
Hillesheim
,
J. C.
DeBoo
,
W. A.
Peebles
,
T. A.
Carter
,
G.
Wang
,
T. L.
Rhodes
,
L.
Schmitz
,
G. R.
McKee
,
Z.
Yan
,
G. M.
Staebler
,
K. H.
Burrell
,
E. J.
Doyle
,
C.
Holland
,
C. C.
Petty
,
S. P.
Smith
,
A. E.
White
, and
L.
Zeng
,
Phys. Rev. Lett.
110
,
045003
(
2013
).
5.
6.
I. K.
Itoh
,
S.-I.
Itoh
,
S.
Inagaki
,
T.
Kobayashi
,
A.
Fujisawa
,
Y.
Nagashima
,
S.
Oldenbürger
,
K.
Ida
,
T.
Tokuzawa
,
Y.
Nagayama
,
K.
Kawahata
,
H.
Yamada
, and
LHD Experiment Group
,
Plasma Phys. Controlled Fusion
54
,
095016
(
2012
).
7.
S.-I.
Itoh
and
K.
Itoh
,
Plasma Phys. Controlled Fusion
43
,
1055
(
2001
).
8.
F.
Jenko
,
J. Plasma Fusion Res. Ser.
6
,
11
(
2004
).
9.
W.
Horton
,
Turbulent Transport in Magnetized Plasmas
(
World Scientific Publishing
,
Singapore
,
2012
).
10.
W.
Dorland
,
F.
Jenko
,
M.
Kotschenreuther
, and
B. N.
Rogers
,
Phys. Rev. Lett.
85
,
5579
(
2000
).
11.
C.
Moon
,
T.
Kaneko
, and
R.
Hatakeyama
,
Phys. Rev. Lett.
111
,
115001
(
2013
).
12.
C.
Moon
,
T.
Kaneko
,
S.
Tamura
, and
R.
Hatakeyama
,
Rev. Sci. Instrum.
81
,
053506
(
2010
).
13.
Y. C.
Lee
,
J. Q.
Dong
,
P. N.
Guzdar
, and
C. S.
Liu
,
Phys. Fluids
30
,
1331
(
1987
).
14.
R.
Ichiki
,
T.
Kaneko
,
K.
Hayashi
,
S.
Tamura
, and
R.
Hatakeyama
,
Plasma Phys. Controlled Fusion
51
,
035011
(
2009
).
15.
M.
Yoshinuma
,
M.
Inutake
,
R.
Hatakeyama
,
T.
Kaneko
,
K.
Hattori
,
A.
Ando
, and
N.
Sato
,
Phys. Lett. A
255
,
301
(
1999
).
16.
A.
Komori
,
N.
Sato
, and
Y.
Hatta
,
Phys. Rev. Lett.
40
,
768
(
1978
).
17.
F.
Brochard
,
E.
Gravier
, and
G.
Bonhomme
,
Phys. Plasmas
12
,
062104
(
2005
).
18.
Y. C.
Kim
and
E. J.
Powers
,
IEEE Trans. Plasma Sci. Phys.
7
,
120
(
1979
).
19.
Y.
Nagashima
,
K.
Itoh
,
S.-I.
Itoh
,
A.
Fujisawa
,
M.
Yagi
,
K.
Hoshino
,
K.
Shinohara
,
A.
Ejiri
,
Y.
Takase
,
T.
Ido
,
K.
Uehara
,
Y.
Miura
, and
JFT-2M Group
,
Plasma Phys. Controlled Fusion
49
,
1611
(
2007
).
You do not currently have access to this content.