Self-induced gaseous plasma is evaluated as active opening switch medium for pulsed high power microwave radiation. The self-induced plasma switch is investigated for N2 and Ar environments under pressure conditions ranging from 25 to 700 Torr. A multi-pass TE111 resonator is used to significantly reduce the delay time inherently associated with plasma generation. The plasma forms under the pulsed excitation of a 4 MW magnetron inside the central dielectric tube of the resonator, which isolates the inner atmospheric gas from the outer vacuum environment. The path from the power source to the load is designed such that the pulse passes through the plasma twice with a 35 ns delay between these two passes. In the first pass, initial plasma density is generated, while the second affects the transition to a highly reflective state with as much as 30 dB attenuation. Experimental data revealed that virtually zero delay time may be achieved for N2 at 25 Torr. A two-dimensional fluid model was developed to study the plasma formation times for comparison with experimental data. The delay time predicted from this model agrees well with the experimental values in the lower pressure regime (error < 25%), however, due to filamentary plasma formation at higher pressures, simulated delay times may be underestimated by as much as 50%.

1.
Z. J.
Yao
,
S.
Chen
,
S.
Eshelman
,
D.
Denniston
, and
C.
Goldsmith
, “
Micromachined low-loss microwave switches
,”
J. Microelectromech. Syst.
8
,
129
134
(
1999
).
2.
A. F.
Berezniak
and
A. S.
Korotkov
, “
Solid-state microwave switches: Circuitry, manufacturing technologies and development trends. Review (part 1)
,”
Radioelectron. Commun. Syst.
56
,
159
177
(
2013
).
3.
K. E.
Mortenson
,
J. M.
Borrego
,
P. E.
Bakeman
, and
R. J.
Gutmann
, “
Microwave silicon windows for high-power broad-band switching applications
,”
IEEE J. Solid-State Circuits
4
,
413
421
(
1969
).
4.
G.
Edmiston
,
A.
Neuber
,
L.
McQuage
,
J.
Krile
,
H.
Krompholz
, and
J.
Dickens
, “
Contributing factors to window flashover under pulsed high power microwave excitation at high altitude
,”
IEEE Trans. Dielectr. Electr. Insul.
14
,
783
789
(
2007
).
5.
J.
Foster
,
G.
Edmiston
,
M.
Thomas
, and
A.
Neuber
, “
High power microwave switching utilizing a waveguide spark gap
,”
Rev. Sci. Instrum.
79
,
114701
(
2008
).
6.
L.
Beilin
,
A. S.
Shlapakovski
,
M.
Donskoy
,
Y.
Hadas
,
U.
Dai
, and
Y. E.
Krasik
, “
Fast-framing optical imaging of plasma formation in resonant microwave pulse compressor
,”
IEEE Trans. Plasma Sci.
42
,
1346
1352
(
2014
).
7.
L.
Beilin
,
A.
Shlapakovski
,
M.
Donskoy
,
T.
Queller
, and
Y. E.
Krasik
, “
Plasma density temporal evolution in a high-power microwave pulse compressor switch
,”
EPL (Europhysics Letters)
109
,
25001
(
2015
).
8.
J.
Foster
,
S.
Beeson
,
M.
Thomas
,
J.
Krile
,
H.
Krompholz
, and
A.
Neuber
, “
Rapid formation of dielectric surface flashover due to pulsed high power microwave excitation
,”
IEEE Trans. Dielectr. Electr. Insul.
18
,
964
970
(
2011
).
9.
H.
Goldie
and
S.
Patel
, “
An rf-primed all-halogen gas plasma microwave high-power receiver protector
,”
IEEE Trans. Microwave Theor. Tech.
30
,
2177
2184
(
1982
).
10.
S.
Beeson
,
J.
Dickens
, and
A.
Neuber
, “
A high power microwave triggered rf opening switch
,”
Rev. Sci. Instrum.
86
,
034704
(
2015
).
11.
J. T.
Krile
and
A. A.
Neuber
, “
Modeling statistical variations in high power microwave breakdown
,”
Appl. Phys. Lett.
98
,
211502
(
2011
).
12.
G.
Hagelaar
and
L. C.
Pitchford
, “
Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
,”
Plasma Sources Sci. Technol.
14
,
722
(
2005
).
13.
A. V.
Phelps
and
L. C.
Pitchford
, “
Anisotropic scattering of electrons by N 2 and its effect on electron transport
,”
Phys. Rev. A
31
,
2932
(
1985
).
14.
P. S.
Kothnur
and
L. L.
Raja
, “
Two-dimensional simulation of a direct-current microhollow cathode discharge
,”
J. Appl. Phys.
97
,
043305
043305-12
(
2005
).
15.
H. C.
Kim
,
F.
Iza
,
S. S.
Yang
,
M.
Radmilović-Radjenović
, and
J. K.
Lee
, “
Particle and fluid simulations of low-temperature plasma discharges: Benchmarks and kinetic effects
,”
J. Phys. D: Appl. Phys.
38
,
R283
(
2005
).
16.
T. E.
Nitschke
and
D. B.
Graves
, “
A comparison of particle in cell and fluid model simulations of low‐pressure radio frequency discharges
,”
J. Appl. Phys.
76
,
5646
5660
(
1994
).
17.
H. W.
Ellis
,
R. Y.
Pai
,
E. W.
McDaniel
,
E. A.
Mason
, and
L. A.
Viehland
, “
Transport properties of gaseous ions over a wide energy range
,”
Atom. Data Nucl. Data Tables
17
,
177
210
(
1976
).
18.
I. A.
Kossyi
,
A. Y.
Kostinsky
,
A. A.
Matveyev
, and
V. P.
Silakov
, “
Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures
,”
Plasma Sources Sci. Technol.
1
,
207
(
1992
).
19.
F. J.
Mehr
and
M. A.
Biondi
, “
Electron temperature dependence of recombination of O 2+ and N 2+ ions with electrons
,”
Phys. Rev.
181
,
264
(
1969
).
20.
S.
Beeson
,
J.
Dickens
, and
A.
Neuber
, “
Plasma relaxation mechanics of pulsed high power microwave surface flashover
,”
Phys. Plasmas
20
,
093509
(
2013
).
21.
M. N.
Sadiku
,
Numerical Techniques in Electromagnetics
(
CRC press
,
2000
).
22.
M.
Reiser
, “
On the stability of finite difference schemes in transient semiconductor problems
,”
Comput. Methods Appl. Mech. Eng.
2
,
65
68
(
1973
).
You do not currently have access to this content.