There is growing evidence that when magnetic reconnection occurs in high Lundquist number plasmas such as in the Solar Corona or the Earth's Magnetosphere it does so within a fragmented, rather than a smooth current layer. Within the extent of these fragmented current regions, the associated magnetic flux transfer and energy release occur simultaneously in many different places. This investigation focusses on how best to quantify the rate at which reconnection occurs in such layers. An analytical theory is developed which describes the manner in which new connections form within fragmented current layers in the absence of magnetic nulls. It is shown that the collective rate at which new connections form can be characterized by two measures; a total rate which measures the true rate at which new connections are formed and a net rate which measures the net change of connection associated with the largest value of the integral of E|| through all of the non-ideal regions. Two simple analytical models are presented which demonstrate how each should be applied and what they quantify.

1.
E. G.
Zweibel
and
M.
Yamada
,
Annu. Rev. Astron. Astrophys.
47
,
291
(
2009
).
2.
E.
Priest
and
T.
Forbes
,
Magnetic Reconnection
(
Cambridge University Press
,
2000
).
3.
E. N.
Parker
,
J. Geophys. Res.
62
,
509
, doi: (
1957
).
4.
P. A.
Sweet
, in
Electromagnetic Phenomena in Cosmical Physics
, IAU Symposium Vol. 6, edited by
B.
Lehnert
(
Cambridge University Press
,
1958
), p.
123
.
5.
H. E.
Petschek
,
NASA Spec. Publ.
50
,
425
(
1964
).
6.
N. F.
Loureiro
,
A. A.
Schekochihin
, and
S. C.
Cowley
,
Phys. Plasmas
14
,
100703
(
2007
).
7.
A.
Bhattacharjee
,
Y.-M.
Huang
,
H.
Yang
, and
B.
Rogers
,
Phys. Plasmas
16
,
112102
(
2009
).
8.
W.
Daughton
,
V.
Roytershteyn
,
H.
Karimabadi
,
L.
Yin
,
B. J.
Albright
,
B.
Bergen
, and
K. J.
Bowers
,
Nat. Phys.
7
,
539
(
2011
).
9.
P. F.
Wyper
and
D. I.
Pontin
,
Phys. Plasmas
21
,
082114
(
2014
).
10.
D. I.
Pontin
,
A. L.
Wilmot-Smith
,
G.
Hornig
, and
K.
Galsgaard
,
Astron. Astrophys.
525
,
A57
(
2011
).
11.
M.
Karlický
,
Res. Astron. Astrophys.
14
,
753
(
2014
).
12.
R.
Liu
,
J.
Lee
,
T.
Wang
,
G.
Stenborg
,
C.
Liu
, and
H.
Wang
,
Astrophys. J. Lett.
723
,
L28
(
2010
).
13.
M.
Hesse
and
M. G.
Kivelson
,
New Perspectives on the Earth's Magnetotail
, Geophysical Monograph Series Vol. 105 (
American Geophysical Union
,
Washington DC
,
1998
), p.
139
.
14.
M. A.
Shay
,
J. F.
Drake
,
M.
Swisdak
,
W.
Dorland
, and
B. N.
Rogers
,
Geophys. Res. Lett.
30
,
1345
, doi: (
2003
).
15.
P. F.
Wyper
and
D. I.
Pontin
,
Phys. Plasmas
21
,
102102
(
2014
).
16.
D. I.
Pontin
,
G.
Hornig
, and
E. R.
Priest
,
Geophys. Astrophys. Fluid Dynamics
99
,
77
(
2005
).
17.
V. M.
Vasyliunas
,
Rev. Geophys. Space Phys.
13
,
303
, doi: (
1975
).
18.
P. F.
Wyper
and
R.
Jain
,
Phys. Plasmas
20
,
052901
(
2013
).
19.
P. F.
Wyper
and
D. I.
Pontin
,
Phys. Plasmas
20
,
032117
(
2013
).
20.
C. E.
Parnell
,
A. L.
Haynes
, and
K.
Galsgaard
,
ApJ
675
,
1656
(
2008
).
21.
K.
Schindler
,
M.
Hesse
, and
J.
Birn
,
J. Geophys. Res.
93
,
5547
, doi: (
1988
).
22.
M.
Hesse
and
K.
Schindler
,
J. Geophys. Res.
93
,
5559
, doi: (
1988
).
23.
M.
Hesse
and
J.
Birn
,
Adv. Space Res.
13
,
249
(
1993
).
24.
D. P.
Stern
,
Am. J. Phys.
38
,
494
(
1970
).
25.
M.
Hesse
,
T. G.
Forbes
, and
J.
Birn
,
ApJ
631
,
1227
(
2005
).
26.
G.
Hornig
and
E.
Priest
,
Phys. Plasmas
10
,
2712
(
2003
).
27.
28.
A. L.
Wilmot-Smith
,
D. I.
Pontin
,
A. R.
Yeates
, and
G.
Hornig
,
A&A
536
,
A67
(
2011
).
29.
A. F.
Rappazzo
and
E. N.
Parker
,
Astrophys. J. Lett.
773
,
L2
(
2013
).
30.
J.
Qiu
,
W.
Liu
,
N.
Hill
, and
M.
Kazachenko
,
ApJ
725
,
319
(
2010
).
31.
D. E.
Wendel
,
D. K.
Olson
,
M.
Hesse
,
N.
Aunai
,
M.
Kuznetsova
,
H.
Karimabadi
,
W.
Daughton
, and
M. L.
Adrian
,
Phys. Plasmas
20
,
122105
(
2013
).
32.
G.
Kowal
,
A.
Lazarian
,
E. T.
Vishniac
, and
K.
Otmianowska-Mazur
,
ApJ
700
,
63
(
2009
).
You do not currently have access to this content.