Among the various attempts to understand collisionless absorption of intense and superintense ultrashort laser pulses, a whole variety of models and hypotheses has been invented to describe the laser beam target interaction. In terms of basic physics, collisionless absorption is understood now as the interplay of the oscillating laser field with the space charge field produced by it in the plasma. A first approach to this idea is realized in Brunel's model the essence of which consists in the formation of an oscillating charge cloud in the vacuum in front of the target, therefore frequently addressed by the vague term “vacuum heating.” The investigation of statistical ensembles of orbits shows that the absorption process is localized at the ion-vacuum interface and in the skin layer: Single electrons enter into resonance with the laser field thereby undergoing a phase shift which causes orbit crossing and braking of Brunel's laminar flow. This anharmonic resonance acts like an attractor for the electrons and leads to the formation of a Maxwellian tail in the electron energy spectrum. Most remarkable results of our investigations are the Brunel like spectral hot electron distribution at the relativistic threshold, the minimum of absorption at Iλ2(0.31.2)×1021Wcm2μm2 in the plasma target with the electron density of neλ21023cm3μm2, the drastic reduction of the number of hot electrons in this domain and their reappearance in the highly relativistic domain, and strong coupling, beyond expectation, of the fast electron jets with the return current through Cherenkov emission of plasmons. The hot electron energy scaling shows a strong dependence on intensity in the moderately relativistic domain Iλ2(10181020)Wcm2μm2, a scaling in vague accordance with current published estimates in the range Iλ2(0.143.5)×1021Wcm2μm2, and again a distinct power increase beyond I=3.5×1021Wcm2μm2. The low energy electrons penetrate normally to the target surface, the energetic electrons propagate in laser beam direction.

1.
A. D.
Piliya
,
Sov. Phys. Tech. Phys.
11
,
609
(
1966
).
2.
H.-J.
Kull
,
Phys. Fluids
26
,
1881
(
1983
).
3.
W. L.
Kruer
and
K.
Estabrook
,
Phys. Fluids
28
,
430
(
1985
).
F.
Brunel
,
Phys. Fluids
31
,
2714
(
1988
).
5.
P.
Gibbon
and
A. R.
Bell
,
Phys. Rev. Lett.
68
,
1535
(
1992
).
7.
L. M.
Chen
,
J.
Zhang
,
Q. L.
Dong
,
H.
Teng
,
T. J.
Liang
,
L. Z.
Zhao
, and
Z. Y.
Whei
,
Phys. Plasmas
8
,
2925
(
2001
);
Q.
Dong
and
J.
Zhang
,
Sci. China
46
,
71
(
2003
);
S.
Kato
,
J. Plasma Fusion Res.
6
,
658
(
2004
).
8.
A. V.
Getz
and
V. P.
Krainov
,
J. Exp. Theor. Phys.
101
,
80
(
2005
).
9.
W.
Rozmus
and
V. T.
Tikhonchuk
,
Phys. Rev. A
42
,
7401
(
1990
);
[PubMed]
W.
Rozmus
,
V. T.
Tikhonchuk
, and
R.
Cauble
,
Phys. Plasmas
3
,
360
(
1996
).
10.
T.-Y. B.
Yang
,
W. L.
Kruer
,
R. M.
More
, and
A. B.
Langdon
,
Phys. Plasmas
2
,
3146
(
1995
);
T.-Y. B.
Yang
,
W. L.
Kruer
,
A. B.
Langdon
, and
T. W.
Johnston
,
Phys. Plasmas
3
,
2702
(
1996
).
11.
G.
Ferrante
,
M.
Zarcone
, and
S. A.
Uryupin
,
Phys. Plasmas
9
,
4560
(
2002
).
12.
S.
Kato
,
B.
Bhattacharyya
,
A.
Nishiguchi
, and
K.
Mima
,
Phys. Fluids B
5
,
564
(
1993
).
13.
H.-B.
Cai
,
Phys. Plasmas
13
,
063108
(
2006
).
14.
D.
Bauer
and
P.
Mulser
,
Phys. Plasmas
14
,
023301
(
2007
).
15.
P.
Mulser
,
S.-M.
Weng
, and
T.
Liseykina
,
Phys. Plasmas
19
,
043301
(
2012
).
16.
M.
Cerchez
,
R.
Jung
,
J.
Osterholz
,
T.
Toncian
,
O.
Willi
,
P.
Mulser
, and
H.
Ruhl
,
Phys. Rev. Lett.
100
,
245001
(
2008
).
17.
S. C.
Wilks
,
W. L.
Kruer
,
M.
Tabak
, and
A. B.
Langdon
,
Phys. Rev. Lett.
69
,
1383
(
1992
).
18.
T.
Baeva
,
S.
Gordienko
,
A. P. L.
Robinson
, and
P. A.
Norreys
,
Phys. Plasmas
18
,
056702
(
2011
).
19.
G.
Malka
and
J. L.
Miquel
,
Phys. Rev. Lett.
77
,
75
(
1996
).
20.
P.
McKenna
,
F.
Lindau
,
O.
Lundh
,
D. C.
Carroll
,
R. J.
Clarke
,
K. W. D.
Ledingham
,
T.
McCanny
,
D.
Neely
,
A. P. L.
Robinson
,
L.
Robson
,
P. T.
Simpson
,
C.-G.
Wahlström
, and
M.
Zepf
,
Plasma Phys. Controlled Fusion
49
,
B223
(
2007
).
21.
F. N.
Beg
,
A. R.
Bell
,
A. E.
Dangor
,
C. N.
Danson
,
A. P.
Fews
,
M. E.
Glinsky
,
B. A.
Hammel
,
P.
Lee
,
P. A.
Norreys
, and
M.
Tatarakis
,
Phys. Plasmas
4
,
447
(
1997
).
22.
M. G.
Haines
,
M. S.
Wei
,
F. N.
Beg
, and
R. B.
Stephens
,
Phys. Rev. Lett.
102
,
045008
(
2009
).
23.
P.
Gibbon
,
A. A.
Andreev
, and
K. Yu.
Platonov
,
Plasma Phys. Controlled Fusion
54
,
045001
(
2012
).
24.
C. D.
Chen
,
J. A.
King
,
M. H.
Key
,
K. U.
Akli
,
F. N.
Beg
,
H.
Chen
,
R. R.
Freeman
,
A.
Link
,
A. J.
Mackinnon
,
A. G.
MacPhee
,
P. K.
Patel
,
M.
Porkolab
,
R. B.
Stephens
, and
L. D.
Van Woerkom
,
Rev. Sci. Instrum.
79
,
10E305
(
2008
).
25.
A. G.
MacPhee
,
K. U.
Akli
,
F. N.
Beg
,
C. D.
Chen
,
H.
Chen
,
R.
Clarke
,
D. S.
Hey
,
R. R.
Freeman
,
A. J.
Kemp
,
M. H.
Key
,
J. A.
King
,
S.
Le Pape
,
A.
Link
,
T. Y.
Ma
,
H.
Nakamura
,
D. T.
Offermann
,
V. M.
Ovchinnikov
,
P. K.
Patel
,
T. W.
Phillips
,
R. B.
Stephens
,
R.
Town
,
Y. Y.
Tsui
,
M. S.
Wei
,
L. D.
Van Woerkom
, and
A. J.
Mackinnon
,
Rev. Sci. Instrum.
79
,
10F302
(
2008
).
26.
T.
Kluge
,
T.
Cowan
,
A.
Debus
,
U.
Schramm
,
K.
Zeil
, and
M.
Bussmann
,
Phys. Rev. Lett.
107
,
205003
(
2011
).
27.
A.
Macchi
,
A Superintense Laser-Plasma Interaction Theory Primer
(
Springer
,
New York
,
2013
), Chap. 4, Sec. 2.
28.
Y.
Sentoku
,
V. Y.
Bychenkov
,
K.
Flippo
,
A.
Maksimchuk
,
K.
Mima
,
G.
Mourou
,
Z. M.
Sheng
, and
D.
Umstadter
,
Appl. Phys. B
74
,
207
(
2002
).
29.
V. S.
Rastunkov
and
V. P.
Krainov
,
Laser Phys.
15
,
262
(
2005
).
30.
D. F.
Zaretsky
,
Ph. A.
Korneev
,
S. V.
Popruzhenko
, and
W.
Becker
,
J. Phys. B
37
,
4817
(
2004
).
31.
Ph. A.
Korneev
,
S. V.
Popruzhenko
,
D. F.
Zaretsky
, and
W.
Becker
,
Laser Phys. Lett.
2
,
452
(
2005
).
32.
A. V.
Sofronov
and
V. P.
Krainov
,
J. Phys. B
37
,
L329
(
2004
).
33.
34.
P.
Mulser
,
D.
Bauer
, and
H.
Ruhl
,
Phys. Rev. Lett.
101
,
225002
(
2008
).
35.
J. R.
Davies
,
Plasma Phys. Controlled Fusion
51
,
014006
(
2009
);
J. R.
Davies
,
Nucl. Instrum. Methods Phys. Res. A
544
,
61
(
2005
).
36.
P.
Gibbon
,
A. A.
Andreev
,
E.
Lefebvre
,
G.
Bonnaud
,
H.
Ruhl
,
J.
Delettrez
, and
A. R.
Bell
,
Phys. Plasmas
6
,
947
(
1999
).
37.
A. J.
Kemp
,
Y.
Sentoku
, and
M.
Tabak
,
Phys. Rev. E
79
,
066406
(
2009
).
38.
P.
Mulser
and
D.
Bauer
,
High Power Laser-Matter Interaction
(
Springer
,
Heidelberg
,
2010
), p.
356
.
39.
M.
Sherlock
,
E. G.
Hill
,
R. G.
Evans
, and
S. J.
Rose
,
Phys. Rev. Lett.
113
,
255001
(
2014
).
40.
S. M.
Weng
,
P.
Mulser
, and
Z. M.
Sheng
,
Phys. Plasmas
19
,
022705
(
2012
).
41.
J.
Sanz
,
A.
Debayle
, and
K.
Mima
,
Phys. Rev. E.
85
,
046411
(
2012
).
42.
H.
Chen
,
S. C.
Wilks
,
W.
Kruer
,
P.
Patel
, and
R.
Shepherd
, “
Hot electron energy distributions from ultra-intense laser solid interactions
,”
Phys. Plasmas
16
,
020705
(
2009
).
43.
N.
Naumova
,
T.
Schlegel
,
V. T.
Tikhonchuk
,
C.
Labaune
,
I. V.
Sokolov
, and
G.
Mourou
,
Phys. Rev. Lett.
102
,
025002
(
2009
).
44.
M.
Tamburini
,
T. V.
Liseykina
,
F.
Pegoraro
, and
A.
Macchi
,
Phys. Rev. E
85
,
016407
(
2012
);
M.
Tamburini
,
F.
Pegoraro
,
A.
Di Piazza
,
C. H.
Keitel
, and
A.
Macchi
,
New J. Phys.
12
,
123005
(
2010
).
45.
L. L.
Ji
,
A.
Pukhov
,
I. Yu.
Kostyukov
,
B. F.
Shen
, and
K.
Akli
,
Phys. Rev. Lett.
112
,
145003
(
2014
).
46.
S. C.
Wilks
and
W. L.
Kruer
,
IEEE J. Quantum Electron.
33
,
1954
(
1997
).
You do not currently have access to this content.