We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore, we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction.

1.
C. K.
Birdsall
, “
Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC
,”
IEEE Trans. Plasma Sci.
19
(
2
),
65
85
(
1991
).
2.
C. P.
Ridgers
,
J. G.
Kirk
,
R.
Duclous
,
T. G.
Blackburn
,
C. S.
Brady
,
K.
Bennett
,
T. D.
Arber
, and
A. R.
Bell
, “
Modelling γ-ray photon emission and pair production in high-intensity laser–matter interactions
,”
J. Comput. Phys.
260
,
273
285
(
2014
).
3.
M.
Chen
,
E.
Esarey
,
C. G. R.
Geddes
,
C. B.
Schroeder
,
G. R.
Plateau
,
S. S.
Bulanov
,
S.
Rykovanov
, and
W. P.
Leemans
, “
Modeling classical and quantum radiation from laser-plasma accelerators
,”
Phys. Rev. Spec. Top. - Accel. Beams
16
(
3
),
030701
(
2013
).
4.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
McGraw-Hill
,
1985
).
5.
J. M.
Dawson
, “
Particle simulation of plasmas
,”
Rev. Mod. Phys.
55
,
403
447
(
1983
).
6.
See www.clf.stfc.ac.uk for Central Laser Facility, Vulcan.
7.
See www.extreme-light infrastructure.eu for Extreme Light Infrastructure.
8.
See www.xcels.iapras.ru for Exawatt Center for Extreme Light Studies (XCELS).
9.
A.
Ilderton
and
G.
Torgrimsson
, “
Radiation reaction in strong field QED
,”
Phys. Lett. B
725
(
4
),
481
486
(
2013
).
10.
C. N.
Harvey
,
A.
Ilderton
, and
B.
King
, “
Testing numerical implementations of strong-field electrodynamics
,”
Phys. Rev. A
91
(
1
),
013822
(
2015
).
11.
L. D.
Landau
and
E. M.
Lifshitz
,
The Classical Theory of Fields
(
Elsevier
,
Oxford
,
1975
).
12.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley-VCH
,
1998
), Vol.
1
, p.
832
.
13.
A.
Rousse
,
K. T.
Phuoc
,
R.
Shah
, and
A.
Pukhov
, “
Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction
,”
Phys. Rev. Lett.
93
(
13
),
135005
(
2004
).
14.
A.
Gonoskov
,
S.
Bastrakov
,
E.
Efimenko
,
A.
Ilderton
,
M.
Marklund
,
I.
Meerov
,
A.
Muraviev
,
I.
Surmin
, and
E.
Wallin
, “
Extending PIC schemes for the study of physics in ultra-strong laser fields
,” e-print arXiv:1412.6426.
2014
.
15.
A. G. R.
Thomas
, “
Algorithm for calculating spectral intensity due to charged particles in arbitrary motion
,”
Phys. Rev. Spec. Top. - Accel. Beams
13
(
2
),
020702
(
2010
).
16.
A.
Zhidkov
,
J.
Koga
,
A.
Sasaki
, and
M.
Uesaka
, “
Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma
,”
Phys. Rev. Lett.
88
,
185002
(
2002
).
17.
T.
Nakamura
,
J. K.
Koga
,
T. Zh.
Esirkepov
,
M.
Kando
,
G.
Korn
, and
S. V.
Bulanov
, “
High-power γ-ray flash generation in ultraintense laser-plasma interactions
,”
Phys. Rev. Lett.
108
,
195001
(
2012
).
18.
S.
Bastrakov
,
R.
Donchenko
,
A.
Gonoskov
,
E.
Efimenko
,
A.
Malyshev
,
I.
Meyerov
, and
I.
Surmin
, “
Particle-in-cell plasma simulation on heterogeneous cluster systems
,”
J. Comput. Sci.
3
(
6
),
474
479
(
2012
).
19.
J. P.
Boris
, “
Relativistic plasma simulation-optimization of a hybrid code
,” in
Proceedings of the Fourth Conference on Numerical Simulations of Plasmas
(
Naval Research Laboratory
,
Washington, DC
,
1970
), pp.
3
67
.
20.
M.
Lobet
,
E.
D'Humières
,
M.
Grech
,
C.
Ruyer
,
X.
Davoine
, and
L.
Gremillet
, “
Modeling of radiative and quantum electrodynamics effects in PIC simulations of ultra-relativistic laser-plasma interaction
,” e-print arXiv:1311.1107.
2013
.
You do not currently have access to this content.