The transverse evolution of the envelope of an intense, unbunched ion beam in a linear periodic transport channel can be modeled for the approximation of linear self-fields by the Kapchinskij-Vladimirskij envelope equation. The envelope mismatched modes, or the second order even mode [I. Hofmann, Phys. Rew. E 57, 4713 (1998)], are the lowest order of resonance leading to collective instability that the designer should avoid, which suggests that an accelerator system should be established in the parameter region where the zero beam current phase advance σ0 less than 90°. In this paper, we systemically studied the resonance mechanisms which result in confluent resonance in quadrupole Focusing-Defocusing (FD) channel and parametric resonance in solenoid channel. We propose that the mismatch modes cannot be exactly separated in FD channel; if one mode is excited, there is always some contribution of the other. To verify the influence of the confluent resonance and parametric resonance, the 2D Poissons solver in the self-consistent particle-in-cell simulation code TOPOPIC is adopted to study the beam evolution in both channels. Our simulations results show that the emittance show significant growth both in the confluent resonance stop band and parametric resonance stop band. The influences of the higher order of resonance are also discussed.

1.
R. L.
Gluckstern
,
Proceedings of the 1970 Proton Linear Accelerator Conference
(Batavia,
1970
), paper No. C700928, p.
811
, see http://inspirehep.net/record/66777?ln=zh_CN.
2.
J.
Struckmeier
and
M.
Reiser
, “Theoretical studies of envelope oscillations and instabilities of mismatched intense charged particle beams in periodic focusing channels,”
Part. Accel.
14
,
227
(
1983
).
3.
I.
Hofmann
,
L. J.
Laslett
,
L.
Smith
, and
I.
Haber
, “Stability of the Kapchinskij-Vladimirskij (KV) distribution in long periodic transport systems,”
Part. Accel.
13
,
145
(
1983
).
4.
5.
I.
Hofmann
and
G.
Franchetti
,
Proceedings of EPAC 2002
(
Paris, France
,
2002
), p.
74
.
6.
I. M.
Kapchinskij
and
V. V.
Vladimirskij
,
Proceedings of the 9th International Conference on High Energy Accelerators
(
CERN, Geneva
,
1959
), p.
274
.
7.
F. J.
Sacherer
,
IEEE Trans. Nucl. Sci.
18
,
1105
(
1971
).
8.
C.
Chen
and
R. C.
Davidson
,
Phys. Rev. E
49
,
5679
(
1994
).
9.
I.
Hofmann
,
G.
Franchetti
,
O.
Boine-Frankenheim
,
J.
Qiang
, and
R.
Ryne
,
Phys. Rev. Spec. Top.-Accel. Beams
6
,
024202
(
2003
).
10.
C.
Li
and
Y. L.
Zhao
,
Phys. Rev. Spec. Top. Accel. Beams
17
,
124202
(
2014
).
11.
J.
O'Connell
,
T.
Wangler
,
R.
Mills
, and
K.
Crandall
, in
Proceedings of the 1993 Particle Accelerator Conference
(
IEEE
,
1993
), pp.
3657
3659
.
12.
R. A.
Jameson
, AIP Proceedings of the 1994 Joint US-CERN-Japan International School on Frontiers of Accelerator Technology (Maui, Hawaii, USA,
1994
), p.
530
.
13.
C.
Li
,
Nucl. Instrum. Methods Phys. Res. A
770
,
169
(
2015
).
14.
P. M.
Lapostolle
,
IEEE Trans. Nucl. Sci.
18
,
1101
(
1971
).
15.
R.
Dilão
and
R.
Alves-Pires
,
Nonlinear Dynamics in Particle Accelerators
(
World Scientific
,
1996
), Vol. 23.
16.
I.
Kapchinskii
,
Theory of Resonance Linear Accelerators
(
Harwood
,
1985
).
18.
M.
Reiser
,
Theory and Design of Charged Particle Beams
(
John Wiley & Sons
,
2008
).
19.
L.
Groening
,
Phys. Rev. Spec. Top. Accel. Beams
14
,
064201
(
2011
).
You do not currently have access to this content.