The phenomenon of hard excitation is natural for many electronic oscillators. In particular, in a gyrotron, a maximal efficiency is often attained in the hard excitation regime. In this paper, we study the injection-locking phenomena using two models of an electronic maser in the hard excitation mode. First, bifurcation analysis is performed for the quasilinear model described by ordinary differential equations for the slow amplitude and phase. Two main scenarios of transition to the injection-locked mode are described, which are generalizations of the well-known phase-locking and suppression mechanisms. The results obtained for the quasilinear model are confirmed by numerical simulations of a gyrotron with fixed Gaussian structure of the RF field.

1.
M. I.
Rabinovich
and
D. I.
Trubetskov
,
Oscillations and Waves in Linear and Nonlinear Systems
(
Kluwer
,
Dordrecht
,
1996
).
2.
P. S.
Landa
,
Regular and Chaotic Oscillations
(
Springer
,
Berlin
,
2001
).
3.
A. P.
Kuznetsov
,
S. P.
Kuznetsov
, and
N. M.
Ryskin
,
Nonlinear Oscillations
(
Fizmatlit
,
Moscow
,
2005
).
4.
V.
Anishchenko
,
V.
Astakhov
,
A.
Neiman
,
T.
Vadivasova
, and
L.
Schimansky-Geier
,
Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Developments
(
Springer
,
Berlin
,
2007
).
5.
G. S.
Nusinovich
,
Introduction to the Physics of Gyrotrons
(
Johns Hopkins University Press
,
Baltimore
,
2004
).
6.
V. L.
Bakunin
,
G. G.
Denisov
, and
Y. V.
Novozhilova
, “
Frequency and phase stabilization of a multimode gyrotron with megawatt power by an external signal
,”
Tech. Phys. Lett.
40
,
382
385
(
2014
).
7.
X.
Bai
,
J.
Zhang
,
J.
Yang
, and
Zh.
Jin
, “
Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator
,”
Phys. Plasmas
19
,
123103
(
2012
).
8.
R. Z.
Xiao
,
Z. M.
Song
,
Y. Q.
Deng
, and
C. H.
Chen
, “
Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal
,”
Phys. Plasmas
21
,
093108
(
2014
).
9.
R. Z.
Xiao
,
C. H.
Chen
,
W.
Song
,
X. W.
Zhang
,
J.
Sun
,
Z. M.
Song
,
L. J.
Zhang
, and
L. G.
Zhang
, “
RF phase control in a high-power high-efficiency klystron-like relativistic backward wave oscillator
,”
J. Appl. Phys.
110
,
013301
(
2011
).
10.
É. B.
Abubakirov
,
A. N.
Denisenko
,
A. P.
Konyushkov
,
E. I.
Soluyanov
, and
V. V.
Yastrebov
, “
Peculiarities of operation of a relativistic backward-wave oscillator driven by an external electromagnetic signal
,”
Radiophys. Quantum Electron.
57
,
372
(
2014
).
11.
W.
Song
,
Y.
Teng
,
Z. Q.
Zhang
,
J. W.
Li
,
J.
Sun
,
C. H.
Chen
, and
L. J.
Zhang
, “
Rapid startup in relativistic backward wave oscillator by injecting external backward signal
,”
Phys. Plasmas
19
,
083105
(
2012
).
12.
G. S.
Nusinovich
,
O. V.
Sinitsyn
, and
T. M.
Antonsen
, “
Mode switching in a gyrotron with azimuthally corrugated resonator
,”
Phys. Rev. Lett.
98
,
205101
(
2007
).
13.
M.
Liu
,
C.
Michel
,
S.
Prasad
,
M. I.
Fuks
,
E.
Schamiloglu
, and
C.-L.
Liu
, “
RF mode switching in a relativistic magnetron with diffraction output
,”
Appl. Phys. Lett.
97
,
251501
(
2010
).
14.
M.
Liu
,
C.-L.
Liu
,
D.
Galbreath
,
C.
Michel
,
S.
Prasad
,
M. I.
Fuks
, and
E.
Schamiloglu
, “
Frequency switching in a relativistic magnetron with diffraction output
,”
J. Appl. Phys.
110
,
033304
(
2011
).
15.
E. N.
Starodubova
,
S. A.
Usacheva
,
N. M.
Ryskin
,
Y. V.
Novozhilova
, and
G. S.
Nusinovich
, “
Injection locking of a two-mode electron oscillator with close frequencies
,”
Phys. Plasmas
22
,
033108
(
2015
).
16.
G. S.
Nusinovich
, “
Mode interaction in gyrodevices
,”
Int. J. Electron.
51
,
457
474
(
1981
).
17.
G. S.
Nusinovich
,
L. S.
Rodygina
, and
T. M.
Tarantovich
, “
Theory of synchronization of multimode oscillators with hard self-excitation
,”
Radio Eng. Electron. Phys.
23
,
66
70
(
1978
).
18.
M. M.
Chumakova
,
S. A.
Usacheva
,
M. Y.
Glyavin
,
Y. V.
Novozhilova
, and
N. M.
Ryskin
, “
Mode competition in a two-mode gyrotron with delayed reflections
,”
IEEE Trans. Plasma Sci.
42
,
2030
2036
(
2014
).
19.
L. A.
Vainshtein
, “
General theory of resonant electron autooscillators
,” in
High Power Electronics
, edited by
P. L.
Kapitza
and
L. A.
Vainshtein
(
Nauka
,
Moscow, Russia
,
1969
), pp.
84
129
(in Russian).
20.
D. I.
Trubetskov
and
A. P.
Chetverikov
, “
Theory of a transition process of a traveling wave in a high-Q relativistic monotron
,”
Radiophys. Quantum Electron.
23
,
159
165
(
1980
).
21.
W. E.
Lamb
, Jr.
, “
Theory of an optical maser
,”
Phys. Rev.
134
,
A1429
(
1964
).
22.
A. P.
Kuznetsov
and
S. V.
Milovanov
, “
Synchronization of a self-oscillatory system with bifurcation of merging of a stable and unstable limit cycles
,”
Appl. Nonlinear Dyn.
11
(
4–5
),
16
(
2003
) (in Russian).
23.
C. C.
Chiu
,
K. F.
Pao
,
Y. C.
Yan
,
K. R.
Chu
,
L. R.
Barnett
, and
N. C.
Luhmann
, “
Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier
,”
Phys. Plasmas
15
,
123109
(
2008
).
24.
Y. S.
Yeh
,
T. H.
Chang
,
C. T.
Fan
,
C. L.
Hung
,
J. N.
Jhou
,
J. M.
Huang
,
J. L.
Shiao
,
Z. Q.
Wu
, and
C. C.
Chiu
, “
Nonlinear oscillation behavior of a driven gyrotron backward-wave oscillator
,”
Phys. Plasmas
17
,
113112
(
2010
).
25.
N. S.
Ginzburg
,
A. S.
Sergeev
, and
I. V.
Zotova
, “
Time-domain self-consistent theory of frequency-locking regimes in gyrotrons with low-Q resonators
,”
Phys. Plasmas
22
,
033101
(
2015
).
26.
V. S.
Ergakov
and
M. A.
Moiseev
, “
Theory of synchronization of oscillations in a cyclotron-resonance maser monotron by an external signal
,”
Radiophys. Quantum Electron.
18
,
89
(
1975
).
27.
G. S.
Nusinovich
,
B. G.
Danly
, and
B.
Levush
, “
Gain and bandwidth in stagger-tuned gyroklystrons
,”
Phys. Plasmas
4
,
469
(
1997
).
You do not currently have access to this content.