The transition from laminar to turbulent flows in liquids remains a problem of great interest despite decades of intensive research. Here, we report an atomistic study of this transition in a model Yukawa liquid using molecular dynamics simulations. Starting from an thermally equilibrated Yukawa liquid, for a given value of coupling parameter Γ (defined as ratio of potential energy to kinetic energy per particle) and screening length κ, a subsonic flow of magnitude U0 is superposed and transition to an unstable regime is observed eventually leading to turbulent flow at sufficiently high Reynolds numbers. We have performed a parametric study for a range of Reynolds number R and found that the flow is neutrally stable for R<Rc(Γ), while a transition from laminar to turbulent flow occurs for R>Rc(Γ), where Rc is the critical value of Reynolds number. Strong molecular shear heating is observed in all cases studied here. It is found that the coupling parameter Γ decreases because of molecular shear heating on a time scale comparable to the instability time scale. Irrespective of the initial value of coupling parameter Γ, the average heating rate is found to be sensitive to the ratio of equilibrium flow speed to the thermal speed, say, α=U0vth, where vth=2Γ. Our results reported here are expected to be generic and should apply to a wide variety of strongly coupled systems such as laboratory dusty plasma, molten salts, and charged colloidal systems.

1.
P. K.
Shukla
,
N. N.
Rao
, and
M. Y.
Yu
,
Planet. Space Sci.
38
,
543
(
1990
).
2.
H.
Thomas
,
G. E.
Morfill
,
V.
Demmel
,
J.
Goree
,
B.
Feuerbacher
, and
D.
Möhlmann
, “
Plasma crystal: Coulomb crystallization in a dusty plasma
,”
Phys. Rev. Lett.
73
,
652
(
1994
).
3.
J. H.
Chu
and
I.
Lin
, “
Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas
,”
Phys. Rev. Lett.
72
,
4009
(
1994
).
4.
G. E.
Morfill
and
A. V.
Ivlev
, “
Complex plasmas: An interdisciplinary research field
,”
Rev. Mod. Phys.
81
,
1353
(
2009
).
5.
V. E.
Fortov
,
V. I.
Molotkov
,
A. P.
Nefedov
, and
O. F.
Petrov
, “
Liquid- and crystallike structures in strongly coupled dusty plasmas
,”
Phys. Plasmas
6
,
1759
1768
(
1999
).
6.
V.
Nosenkol
and
J.
Goree
, “
Shear flows and shear viscosity in a two dimensional Yukawa system (dusty plasma)
,”
Phys. Rev. Lett.
93
,
155004
(
2004
).
7.
J.
Ashwin
and
A.
Sen
, “
Microscopic origin of shear relaxation in a model viscoelastic liquid
,”
Phys. Rev. Lett.
114
,
055002
(
2015
).
8.
H.
Ohta
and
S.
Hamaguchi
,
Phys. Rev. Lett.
84
,
6026
(
2000
).
9.
H.
Ohta
and
S.
Hamaguchi
,
Phys. Plasmas
7
,
4506
(
2000
).
10.
J.
Ashwin
and
R.
Ganesh
, “
Kelvin Helmholtz instability in strongly coupled Yukawa liquids
,”
Phys. Rev. Lett.
104
,
215003
(
2010
).
11.
J.
Ashwin
and
R.
Ganesh
, “
Coherent vortices in strongly coupled liquids
,”
Phys. Rev. Lett.
106
,
135001
(
2011
).
12.
W.-T.
Juan
,
M.-H.
Chen
, and
I.
Lin
, “
Nonlinear transports and microvortex excitations in sheared quasi-two-dimensional dust Coulomb liquids
,”
Phys. Rev. E
64
,
016402
(
2001
).
13.
Y.
Feng
,
J.
Goree
, and
B.
Liu
, “
Observation of temperature peaks due to strong viscous heating in a dusty plasma flow
,”
Phys. Rev. Lett.
109
,
185002
(
2012
).
14.
L. D.
Meshalkin
and
Y. G.
Sinai
,
J. Appl. Math. Mech.
25
,
1700
(
1961
).
15.
A. M.
Obukhov
, “
Kolmogorov flow and laboratory simulation of it
,”
Russ. Math. Surv.
38
,
113
(
1983
).
16.
I.
Bena
,
M.
Malek Mansour
, and
F.
Baras
, “
Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime
,”
Phys. Rev. E
59
,
5503
(
1999
).
17.
D. H.
Kelley
and
N. T.
Ouellette
, “
Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment
,”
Am. J. Phys.
79
,
267
(
2011
).
18.
V. I.
Kliatskin
, “
On the nonlinear theory of stability of periodic flows
,”
J. Appl. Math. Mech.
36
,
243
250
(
1972
).
19.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
Oxford
,
1984
).
20.
J.
Ashwin
and
R.
Ganesh
, “
Effect of external drive on strongly coupled Yukawa systems: A nonequilibrium molecular dynamics study
,”
Phys. Rev. E
80
,
056408
(
2009
).
21.
G.
Salin
and
J.-M.
Caillol
, “
Transport coefficients of the Yukawa one-component plasma
,”
Phys. Rev. Lett.
88
,
065002
(
2002
).
22.
S. A.
Khrapak
and
H. M.
Thomas
, “
Fluid approach to evaluate sound velocity in Yukawa systems and complex plasmas
,”
Phys. Rev. E
91
,
033110
(
2015
).
23.
J. P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids: With Applications to Soft Matter
, 4th ed. (
Academic
,
Oxford
,
2013
).
24.
P. G.
Drazin
,
Introduction to Hydrodynamic Stability
(
Cambridge Text in Applied Mathematics University Press
,
Cambridge, England
,
2002
).
25.
J. D.
Huba
,
NRL Plasma Formulary
(
Naval Research Laboratory
,
Washington, DC
,
1994
).
26.
A. F.
Mills
,
Heat and Mass Transfer
(
CRC Press
,
1995
), p.
377
.
27.
J. M.
White
and
S. J.
Muller
, “
Viscous heating and the stability of Newtonian and viscoelastic Taylor-Couette flows
,”
Phys. Rev. Lett.
84
,
5130
5133
(
2000
).
28.
C. P.
Tso
and
S. P.
Mahulikar
, “
Experimental verification of the role of Brinkman number in microchannels using local parameters
,”
Int. J. Heat Mass Transfer
43
,
1837
1849
(
2000
).
29.
G.
Faussurier
and
M. S.
Murillo
, “
Gibbs Bogolyubov inequality and transport properties for strongly coupled Yukawa fluids
,”
Phys. Rev. E
67
,
046404
(
2003
).
30.
P.
Hartmann
,
G. J.
Kalman
,
Z.
Donkó
, and
K.
Kutasi
, “
Equilibrium properties and phase diagram of two-dimensional Yukawa systems
,”
Phys. Rev. E
72
,
026409
(
2005
).
You do not currently have access to this content.