A critical limitation of magnetically imploded systems such as magnetized liner inertial fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is the magneto-Rayleigh-Taylor (MRT) instability which primarily disrupts the outer surface of the liner. MagLIF-relevant experiments have showed large amplitude multi-mode MRT instability growth growing from surface roughness [McBride et al., Phys. Rev. Lett. 109, 135004 (2012)], which is only reproduced by 3D simulations using our MHD code Gorgon when an artificially azimuthally correlated initialisation is added. We have shown that the missing azimuthal correlation could be provided by a combination of the electro-thermal instability (ETI) and an “electro-choric” instability (ECI); describing, respectively, the tendency of current to correlate azimuthally early in time due to temperature dependent Ohmic heating; and an amplification of the ETI driven by density dependent resistivity around vapourisation. We developed and implemented a material strength model in Gorgon to improve simulation of the solid phase of liner implosions which, when applied to simulations exhibiting the ETI and ECI, gave a significant increase in wavelength and amplitude. Full circumference simulations of the MRT instability provided a significant improvement on previous randomly initialised results and approached agreement with experiment.

1.
S. A.
Slutz
,
M. C.
Herrmann
,
R. A.
Vesey
,
A. B.
Sefkow
,
D. B.
Sinars
,
D. C.
Rovang
,
K. J.
Peterson
, and
M. E.
Cuneo
, “
Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
,”
Phys. Plasmas
17
(
5
),
056303
(
2010
).
2.
S. A.
Slutz
and
R. A.
Vesey
, “
High-gain magnetized inertial fusion
,”
Phys. Rev. Lett.
108
,
025003
(
2012
).
3.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Oxford University Press
,
London
,
1961
), p.
429
.
4.
E. G.
Harris
, “
Rayleigh-Taylor instabilities of a collapsing cylindrical shell in a magnetic field
,”
Phys. Fluids
5
(
9
),
1057
1062
(
1962
).
5.
M. K.
Matzen
,
B. W.
Atherton
,
M. E.
Cuneo
,
G. L.
Donovan
,
C. A.
Hall
,
M.
Herrmann
,
M. L.
Kiefer
,
R. J.
Leeper
,
G. T.
Leifeste
,
F. W.
Long
,
G. R.
Mckee
,
T. A.
Mehlhorn
,
J. L.
Porter
,
L. X.
Schneider
,
K. W.
Struve
,
W. A.
Stygar
, and
E. A.
Weinbrecht
, “
The refurbished z facility: Capabilities and recent experiments
,”
Acta Phys. Pol., A
115
,
956
958
(
2009
).
6.
M. E.
Cuneo
,
M. C.
Herrmann
,
D. B.
Sinars
,
S. A.
Slutz
,
W. A.
Stygar
,
R. A.
Vesey
,
A. B.
Sefkow
,
G. A.
Rochau
,
G. A.
Chandler
,
J. E.
Bailey
,
J. L.
Porter
,
R. D.
McBride
,
D. C.
Rovang
,
M. G.
Mazarakis
,
E. P.
Yu
,
D. C.
Lamppa
,
K. J.
Peterson
,
C.
Nakhleh
,
S. B.
Hansen
,
A. J.
Lopez
,
M. E.
Savage
,
C. A.
Jennings
,
M. R.
Martin
,
R. W.
Lemke
,
B. W.
Atherton
,
I. C.
Smith
,
P. K.
Rambo
,
M.
Jones
,
M. R.
Lopez
,
P. J.
Christenson
,
M. A.
Sweeney
,
B.
Jones
,
L. A.
McPherson
,
E.
Harding
,
M. R.
Gomez
,
P. F.
Knapp
,
T. J.
Awe
,
R. J.
Leeper
,
C. L.
Ruiz
,
G. W.
Cooper
,
K. D.
Hahn
,
J.
McKenney
,
A. C.
Owen
,
G. R.
McKee
,
G. T.
Leifeste
,
D. J.
Ampleford
,
E. M.
Waisman
,
A.
Harvey-Thompson
,
R. J.
Kaye
,
M. H.
Hess
,
S. E.
Rosenthal
, and
M. K.
Matzen
, “
Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories
,”
IEEE Trans. Plasma Sci.
40
(
12
),
3222
3245
(
2012
).
7.
R. D.
McBride
,
S. A.
Slutz
,
C. A.
Jennings
,
D. B.
Sinars
,
M. E.
Cuneo
,
M. C.
Herrmann
,
R. W.
Lemke
,
M. R.
Martin
,
R. A.
Vesey
,
K. J.
Peterson
,
A. B.
Sefkow
,
C.
Nakhleh
,
B. E.
Blue
,
K.
Killebrew
,
D.
Schroen
,
T. J.
Rogers
,
A.
Laspe
,
M. R.
Lopez
,
I. C.
Smith
,
B. W.
Atherton
,
M.
Savage
,
W. A.
Stygar
, and
J. L.
Porter
, “
Penetrating radiography of imploding and stagnating beryllium liners on the z accelerator
,”
Phys. Rev. Lett.
109
,
135004
(
2012
).
8.
R. D.
McBride
,
M. R.
Martin
,
R. W.
Lemke
,
J. B.
Greenly
,
C. A.
Jennings
,
D. C.
Rovang
,
D. B.
Sinars
,
M. E.
Cuneo
,
M. C.
Herrmann
,
S. A.
Slutz
,
C. W.
Nakhleh
,
D. D.
Ryutov
,
J.-P.
Davis
,
D. G.
Flicker
,
B. E.
Blue
,
K.
Tomlinson
,
D.
Schroen
,
R. M.
Stamm
,
G. E.
Smith
,
J. K.
Moore
,
T. J.
Rogers
,
G. K.
Robertson
,
R. J.
Kamm
,
I. C.
Smith
,
M.
Savage
,
W. A.
Stygar
,
G. A.
Rochau
,
M.
Jones
,
M. R.
Lopez
,
J. L.
Porter
, and
M. K.
Matzen
, “
Beryllium liner implosion experiments on the z accelerator in preparation for magnetized liner inertial fusion
,”
Phys. Plasmas (1994-present)
20
(
5
),
056309
(
2013
).
9.
J. P.
Chittenden
,
S. V.
Lebedev
,
C. A.
Jennings
,
S. N.
Bland
, and
A.
Ciardi
, “
X-ray generation mechanisms in three-dimensional simulations of wire array z-pinches
,”
Plasma Phys. Controlled Fusion
46
(
12B
),
B457
(
2004
).
10.
A.
Ciardi
,
S. V.
Lebedev
,
A.
Frank
,
E. G.
Blackman
,
J. P.
Chittenden
,
C. J.
Jennings
,
D. J.
Ampleford
,
S. N.
Bland
,
S. C.
Bott
,
J.
Rapley
,
G. N.
Hall
,
F. A.
Suzuki-Vidal
,
A.
Marocchino
,
T.
Lery
, and
C.
Stehle
, “
The evolution of magnetic tower jets in the laboratory
,”
Phys. Plasmas
14
(
5
),
056501
(
2007
).
11.
D. B.
Sinars
,
S. A.
Slutz
,
M. C.
Herrmann
,
R. D.
McBride
,
M. E.
Cuneo
,
K. J.
Peterson
,
R. A.
Vesey
,
C.
Nakhleh
,
B. E.
Blue
,
K.
Killebrew
,
D.
Schroen
,
K.
Tomlinson
,
A. D.
Edens
,
M. R.
Lopez
,
I. C.
Smith
,
J.
Shores
,
V.
Bigman
,
G. R.
Bennett
,
B. W.
Atherton
,
M.
Savage
,
W. A.
Stygar
,
G. T.
Leifeste
, and
J. L.
Porter
, “
Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility
,”
Phys. Rev. Lett.
105
,
185001
(
2010
).
12.
D. D.
Ryutov
,
M. S.
Derzon
, and
M. K.
Matzen
, “
The physics of fast Z pinches
,”
Rev. Mod. Phys.
72
,
167
223
(
2000
).
13.
K. J.
Peterson
,
D. B.
Sinars
,
E. P.
Yu
,
M. C.
Herrmann
,
M. E.
Cuneo
,
S. A.
Slutz
,
I. C.
Smith
,
B. W.
Atherton
,
M. D.
Knudson
, and
C.
Nakhleh
, “
Electrothermal instability growth in magnetically driven pulsed power liners
,”
Phys. Plasmas
19
(
9
),
092701
(
2012
).
14.
K. J.
Peterson
,
E. P.
Yu
,
D. B.
Sinars
,
M. E.
Cuneo
,
S. A.
Slutz
,
J. M.
Koning
,
M. M.
Marinak
,
C.
Nakhleh
, and
M. C.
Herrmann
, “
Simulations of electrothermal instability growth in solid aluminum rods
,”
Phys. Plasmas (1994-present)
20
(
5
),
056305
(
2013
).
15.
V. I.
Oreshkin
, “
Thermal instability during an electrical wire explosion
,”
Phys. Plasmas
15
(
9
),
092103
(
2008
).
16.
V. I.
Oreshkin
, “
Overheat instabilities in the electric explosion of wires
,”
Tech. Phys. Lett.
35
(
1
),
36
39
(
2009
).
17.
S.
Faik
,
M. M.
Basko
,
A.
Tauschwitz
,
I.
Iosilevskiy
, and
J. A.
Maruhn
, “
Dynamics of volumetrically heated matter passing through the liquid vapor metastable states
,”
High Energy Density Phys.
8
(
4
),
349
359
(
2012
).
18.
A. J.
Kemp
and
J.
Meyer ter Vehn
, “
An equation of state code for hot dense matter, based on the {QEOS} description
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
415
(
3
),
674
676
(
1998
).
19.
R. M.
More
,
K. H.
Warren
,
D. A.
Young
, and
G. B.
Zimmerman
, “
A new quotidian equation of state (QEOS) for hot dense matter
,”
Phys. Fluids (1958–1988)
31
(
10
),
3059
3078
(
1988
).
20.
Y. T.
Lee
and
R. M.
More
, “
An electron conductivity model for dense plasmas
,”
Phys. Fluids (1958–1988)
27
(
5
),
1273
1286
(
1984
).
21.
M. P.
Desjarlais
, “
Practical improvements to the Lee-More conductivity near the metal-insulator transition
,”
Contrib. Plasma Phys.
41
(
2–3
),
267
270
(
2001
).
22.
A.
Amsden
,
H.
Ruppel
, and
C.
Hirt
, “
SALE: A simplified ale computer program for fluid flow at all speeds
,”
Los Alamos National Laboratories Report No. LA-8095
, 101 p, Los Alamos, New Mexico,
1980
.
23.
G. S.
Collins
and
H. J.
Melosh
, “Sales_2: A multi-material hydrocode with elasticplastic strength model and Grady-Kipp fragmentation algorithm.”
24.
G. S.
Collins
,
H.
Jay Melosh
, and
B. A.
Ivanov
, “
Modeling damage and deformation in impact simulations
,”
Meteorit. Planet. Sci.
39
(
2
),
217
231
(
2004
).
25.
K.
Wunnemann
,
G. S.
Collins
, and
H. J.
Melosh
, “
A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets
,”
Icarus
180
(
2
),
514
527
(
2006
).
26.
G. R.
Johnson
and
W. H.
Cook
, “
Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures
,”
Eng. Fract. Mech.
21
(
1
),
31
48
(
1985
).
27.
N. G. W.
Cook
,
J. C.
Jaeger
, and
R. W.
Zimmerman
,
Fundamentals of Rock Mechanics
, 4th ed. (
Blackwall Publishing
,
2007
), Chap. 2.
28.
G.
Collins
, “
Numerical modelling of large impact crater collapse
,” Ph.D. thesis (
Department of Earth Science and Engineering, Imperial College of Science, Technology and Medicine, University of London
,
2002
).
29.
E.
Pierazzo
,
N.
Artemieva
,
E.
Asphaug
,
E. C.
Baldwin
,
J.
Cazamias
,
R.
Coker
,
G. S.
Collins
,
D. A.
Crawford
,
T.
Davison
,
D.
Elbehausen
,
K. A.
Hosapple
,
K. R.
Housen
,
D. G.
Korycansky
, and
K.
Wunnemann
, “
Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets
,”
Meteorit. Planet. Sci.
43
(
12
),
1917
1938
(
2008
).
30.
C.
Jennings
, personal communication (2004).
You do not currently have access to this content.