In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.

1.
E.
Yablonovitch
,
Phys. Rev. Lett.
58
,
2059
(
1987
).
3.
J. J.
Joannopoulos
,
R. D.
Meade
, and
J. N.
Winn
,
Photonic Crystals: Molding the Flow of Light
(
Princeton University Press
,
New Jersey
,
1995
).
4.
O.
Painter
,
R. K.
Lee
,
A.
Scherer
,
A.
Yariv
,
J. D.
O'Brien
,
P. D.
Dapkus
, and
I.
Kim
,
Science
284
,
1819
(
1999
).
5.
V. L.
Ginzberg
,
The Propagation of Electromagnetic Waves in Plasmas
(
Pergamon
,
New York
,
1970
).
6.
H.
Hojo
and
A.
Mase
,
J. Plasma Fusion Res.
80
,
89
(
2004
).
7.
H.
Zhang
,
L.
Ma
, and
S.
Liu
,
Optoelectron. Lett.
5
,
112
(
2009
).
8.
O.
Sakai
and
K.
Tachibana
,
Plasma Sources Sci. Technol.
21
,
013001
(
2012
).
9.
H. F.
Zhang
,
S. B.
Liu
,
X. K.
Kong
,
L.
Zou
,
C. Z.
Li
, and
W. S.
Qing
,
Phys. Plasmas
19
,
022103
(
2012
).
10.
C.
Li
,
S.
Liu
,
X.
Kong
,
H.
Zhang
,
B.
Bian
, and
X.
Zhang
,
IEEE Trans. Plasma Sci.
39
,
1969
1973
(
2011
).
11.
H. F.
Zhang
and
S. B.
Liu
,
IEEE Photonics J.
6
,
5300112
(
2014
).
12.
L.
Shiveshwari
and
P.
Mahto
,
Solid State Commun.
138
,
160
(
2006
).
13.
H. F.
Zhang
,
S. B.
Liu
, and
X. K.
Kong
,
Acta Phys. Sin.
60
,
055209
(
2011
), available at http://wulixb.iphy.ac.cn/CN/article/downloadArticle-File.do?attachType=PDF&id=18400 (in Chinese).
14.
H. F.
Zhang
,
S. B.
Liu
,
H.
Yang
, and
X. K.
Kong
,
Phys. Plasmas
20
,
032118
(
2013
).
15.
H. F.
Zhang
,
S. B.
Liu
, and
X. K.
Kong
,
Phys. Plasmas
20
,
092105
(
2013
).
16.
J.
Kepler
,
Harmonices Mundi
(
Frankfurt
,
Linz
,
1619
).
17.
K.
Ueda
,
T.
Dotera
, and
T.
Gemma
,
Phys. Rev. B
75
,
195122
(
2007
).
18.
D.
Jovanović
,
R.
Gajić
, and
K.
Hingerl
,
Opt. Express
16
,
4048
(
2008
).
19.
L.
Qi
,
J. Appl. Phys.
111
,
073301
(
2012
).
20.
H. F.
Zhang
,
S. B.
Liu
, and
X. K.
Kong
,
Acta Phys. Sin.
60
,
025215
(
2011
), available at http://wulixb.iphy.ac.cn/EN/article/downloadArticleFile.do?attachType=PDF&id=18019 (in Chinese).
21.
V. G.
Veselago
,
Sov. Phys. Usp.
10
,
509
(
1968
).
22.
23.
R.
Gajić
,
R.
Meisels
,
F.
Kuchar
, and
K.
Hingerl
,
Opt. Express
13
,
8596
(
2005
).
24.
C.
Luo
,
S. G.
Johnson
,
J. D.
Joannopoulos
, and
J. B.
Pendry
,
Phys. Rev. B
65
,
201104(R)
(
2002
).
25.
B.
Guo
,
Phys. Plasmas
20
,
074504
(
2013
).
26.
T.
Fu
,
Z.
Yang
,
X.
Tang
,
Z.
Shi
, and
F.
Lan
,
Phys. Plasmas
21
,
013106
(
2014
).
27.
H.
Mehdian
,
Z.
Mohammadzahery
, and
A.
Hasanbeigi
,
Phys. Plasmas
20
,
043505
(
2013
).
28.
H.
Mehdian
,
Z.
Mohammadzahery
, and
A.
Hasanbeigi
,
Phys. Plasmas
21
,
012101
(
2014
).
29.
B.
Guo
,
M. Q.
Xie
,
X. M.
Qiu
, and
L.
Peng
,
Phys. Plasmas
19
,
044505
(
2012
).
30.
L.
Qi
,
L.
Shang
, and
S.
Zhang
,
Phys. Plasmas
21
,
013501
(
2014
).
31.
H. F.
Zhang
,
S. B.
Liu
,
X. K.
Kong
,
B. R.
Bian
, and
Y. N.
Cuo
,
Solid State Commun.
152
,
1221
(
2012
).
32.
H. F.
Zhang
,
S. B.
Liu
,
X. K.
Kong
,
L.
Zhou
,
C. Z.
Li
, and
B. R.
Bian
,
J. Appl. Phys.
110
,
026104
(
2011
).
33.
V.
Kuzmiak
and
A. A.
Maradudin
,
Phys. Rev. B
55
,
7427
(
1997
).
34.
H. F.
Zhang
,
S. B.
Liu
, and
X. K.
Kong
,
Prog. Electromagn. Res.
141
,
267
(
2013
).
35.
H. F.
Zhang
,
S. B.
Liu
, and
X. K.
Kong
,
J. Lightwave Technol.
31
,
1694
(
2013
).
36.
M.
Qiu
and
S.
He
,
Phys. Rev. B
60
,
10610
(
1999
).
You do not currently have access to this content.