Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τm [0 < τm < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τm = 0), it is found that for Reynolds number beyond a critical R, say Rc, the Kolmogorov flow becomes unstable. Importantly, it is found that Rc is strongly reduced for increasing values of τm. A critical τmc is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < Rc, the neutral stability regime found in Navier Stokes fluid (τm = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.

1.
J. H.
Chu
and
I.
Lin
, “
Direct observation of coulomb crystals and liquids in strongly coupled rf dusty plasmas
,”
Phys. Rev. Lett.
72
,
4009
(
1994
).
2.
H.
Thomas
,
G. E.
Morfill
,
V.
Demmel
,
J.
Goree
,
B.
Feuerbacher
, and
D.
Möhlmann
, “
Plasma crystal: Coulomb crystallization in a dusty plasma
,”
Phys. Rev. Lett.
73
,
652
(
1994
).
3.
N.
D'Angelo
,
A.
Barkan
, and
R. L.
Merlino
,
Phys. Rev. Lett.
73
,
3093
(
1994
).
4.
G. E.
Morfill
,
S. A.
Khrapak
, and
A. V.
Ivlev
,
Phys. Rev. E
70
,
056405
(
2004
).
5.
J.
Ashwin
and
R.
Ganesh
, “
Kelvin Helmholtz instability in strongly coupled Yukawa liquids
,”
Phys. Rev. Lett.
104
,
215003
(
2010
).
6.
Y. I.
Frenkel
,
Kinetic Theory of Liquids
(
Clarendon
,
Oxford
,
1946
).
7.
P. K.
Kaw
and
A.
Sen
, “
Low frequency modes in strongly coupled dusty plasmas
,”
Phys. Plasmas
5
(
10
),
3552
(
1998
).
8.
D.
Banerjee
,
M. S.
Janaki
, and
N.
Chakrabarti
, “
Shear flow instability in a strongly coupled dusty plasma
,”
Phys. Rev. E
85
,
066408
(
2012
).
9.
S. K.
Tiwari
,
A.
Das
,
D.
Angom
,
B. G.
Patel
, and
P.
Kaw
, “
Kelvin-Helmholtz instability in a strongly coupled dusty plasma medium
,”
Phys. Plasmas
19
,
073703
(
2012
).
10.
G. E.
Morfill
and
A. V.
Ivlev
, “
Complex plasmas: An interdisciplinary research field
,”
Rev. Mod. Phys.
81
,
1353
(
2009
).
11.
N. N.
Rao
,
P. K.
Shukla
, and
M. Y.
Yu
,
Planet. Space. Sci.
38
,
543
(
1990
).
12.
V. E.
Fortov
,
V. I.
Molotkov
,
A. P.
Nefedov
, and
O. F.
Petrov
, “
Liquid- and crystal-like structures in strongly coupled dusty plasmas
,”
Phys. Plasmas
6
,
1759
1768
(
1999
).
13.
J.
Ashwin
and
R.
Ganesh
, “
Coherent vortices in strongly coupled liquids
,”
Phys. Rev. Lett.
106
,
135001
(
2011
).
14.
L. D.
Meshalkin
and
Y. G.
Sinai
,
J. Appl. Math. Mech.
25
,
1700
(
1961
).
15.
V. I.
Kliatskin
, “
On the nonlinear theory of stability of periodic flows
,”
J. Appl. Math. Mech.
36
,
263
(
1972
).
16.
N. F.
Bondarenko
,
M. Z.
Gak
, and
F. V.
Olzhanskii
,
Akad. Nauk SSSR, Fiz. Atoms. Okeana
10
,
1017
(
1979
).
17.
A. M.
Obukhov
, “
Kolmogorov flow and laboratory simulation of it
,”
Russ. Math. Surveys
38
,
113
(
1983
).
18.
D. H.
Kelley
and
N. T.
Ouellette
, “
Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment
,”
Am. J. Phys.
79
,
267
(
2011
).
19.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
Oxford
,
1984
).
20.
F.
Feudel
and
N.
Seehafer
, “
Bifurcations and pattern formation in a two-dimensional Navier-Stokes fluid
,”
Phys. Rev. E
52
,
3506
(
1995
).
21.
I.
Bena
,
M. Malek
Mansour
, and
F.
Baras
, “
Hydrodynamic fluctuations in the kolmogorov flow: Linear regime
,”
Phys. Rev. E
59
,
5503
(
1999
).
22.
G.
Boffetta
,
A.
Celani
,
A.
Mazzino
,
A.
Puliafito
, and
M.
Vergassola
, “
The viscoelastic Kolmogorov flow: Eddy viscosity and linear stability
,”
J. Fluid Mech.
523
,
161
(
2005
).
23.
M. A.
Berkovsky
,
Phys, Lett. A
166
,
365
(
1992
).
24.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Clarendon
,
Oxford
,
1961
).
25.
Z.
Yin
,
L.
Yuan
, and
T.
Tang
, “
A new parallel strategy for two-dimensional incompressible flow simulations using pseudo-spectral methods
,”
J. Comput. Phys.
210
,
325
341
(
2005
).
26.
M.
Iovieno
,
C.
Cavazzoni
, and
D.
Tordella
, “
A new technique for a parallel dealiased pseudospectral Navier-Stokes code
,”
Comput. Phys. Commun.
141
,
365
374
(
2001
).
27.
G. S.
Patterson
and
S. A.
Orszag
, “
Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions
,”
Phys. Fluids
14
,
2538
2541
(
1971
).
28.
E. A.
Coutsias
,
F. R.
Hansen
,
T.
Huld
,
G.
Knorr
, and
J. P.
Lynov
, “
Spectral methods in numerical plasma simulation
,”
Phys. Scr.
40
,
270
(
1989
).
29.
See http://www.fftw.org for “FFTW.”
You do not currently have access to this content.