The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25–38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

1.
J.
Nuehrenberg
,
W.
Lotz
,
P.
Merkel
,
C.
Nuehrenberg
,
U.
Schwenn
,
E.
Strumberger
, and
T.
Hayashi
,
Proceedings of the Sixth International Toki Conference on Plasma Physics and Controlled Nuclear Fusion - Research for Advanced Concepts in Magnetic Fusion
, Transactions of Fusion Technology Vol.
27
(
American Nuclear Society
,
1995
), p.
71
.
2.
R.
Wolf
and Wendelstein Team,
Fusion Eng. Des.
83
,
990
(
2008
).
3.
A.
Messiaen
,
A.
Krivska
,
F.
Louche
,
J.
Ongena
,
P.
Dumortier
,
F.
Durodie
,
D.
Van Eester
, and
M.
Vervier
, “
Coupling and matching study of the ICRF Antenna for W7-X
,”
AIP Conf. Proc.
1580
,
354
(
2014
).
4.
A.
Messiaen
,
R.
Koch
,
R. R.
Weynants
,
P.
Dumortier
,
F.
Louche
,
R.
Maggiora
, and
D.
Milanesio
,
Nucl. Fusion
50
,
025026
(
2010
).
5.
A.
Messiaen
and
R.
Weynants
,
Plasma Phys. Controlled Fusion
53
,
085020
(
2011
).
6.
D.
Van Eester
and
R.
Koch
,
Plasma Phys. Controlled Fusion
40
,
1949
(
1998
).
7.
D.
Van Eester
and
E.
Lerche
,
Plasma Phys. Controlled Fusion
53
,
092001
(
2011
).
8.
T. H.
Stix
,
Waves in Plasmas
(
American Institute of Physics
,
New York
,
1992
).
9.
F.
Durodié
,
M.
Vrancken
,
R.
Bamber
,
P.
Dumortier
,
D.
Hancock
,
D.
Lockley
,
R.
Maggiora
,
F.
Louche
,
A.
Messiaen
,
D.
Milanesio
,
M.
Nightingale
,
M.
Shannon
,
P.
Tigwell
,
M.
Van Schoor
,
D.
Wilson
,
K.
Winkler
, and
CYCLE Team
, in
Proceedings of the 24th International Atomic Energy Agency (IAEA) Fusion Conference
, San Diego, Paper No.
ITR
P1
.
10.
V.
Lancellotti
,
D.
Milanesio
,
R.
Maggiora
,
G.
Vecchi
, and
V.
Kyrytsya
,
Nucl. Fusion
46
,
S476
(
2006
).
11.
CST Microwave Studio, User Manual Version 2009, September 2008, CST AG, Darmstadt, Germany, see www.cst.com.
12.
A.
Messiaen
,
P.
Dumortier
,
V.
Kyrytsya
,
F.
Louche
, and
M.
Vervier
,
Fusion Eng. Des.
86
,
855
(
2011
).
13.
F.
Durodié
and
M.
Vervier
, in
Proceedings of the 17th Symposium on Fusion Technology
, Roma, Italy, 14–18 September,
1992
, p.
477
.
14.
A.
Messiaen
,
M.
Vervier
,
P.
Dumortier
,
D.
Grine
,
P. U.
Lamalle
,
F.
Durodié
,
R.
Koch
,
F.
Louche
, and
R.
Weynants
,
Nucl. Fusion
49
,
055004
(
2009
).
15.
F.
Durodié
,
Phys. Plasmas
21
,
061512
(
2014
).
16.
P.
Dumortier
,
V.
Kyrytsya
,
F.
Louche
,
A.
Messiaen
,
M.
Vervier
, and
F.
Durodié
, “
ITER ICRH antenna grounding options
,”
Fusion Eng. Des.
88
,
922
(
2013
).
You do not currently have access to this content.