The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8 MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6 × 1013 and ∼0.3 g/cm2, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

1.
J.
Nuckolls
,
L.
Wood
,
A.
Thiessen
, and
G.
Zimmerman
,
Nature
239
,
139
(
1972
).
2.
S. E.
Bodner
,
D. G.
Colombant
,
J. H.
Gardner
,
R. H.
Lehmberg
,
S. P.
Obenschain
,
L.
Phillips
,
A. J.
Schmitt
,
J. D.
Sethian
,
R. L.
McCrory
,
W.
Seka
,
C. P.
Verdon
,
J. P.
Knauer
,
B. B.
Afeyan
, and
H. T.
Powell
,
Phys. Plasmas
5
,
1901
(
1998
).
3.
J. D.
Lindl
,
Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive
(
Springer-Verlag
,
New York
,
1998
).
4.
S.
Atzeni
and
J.
Meyer-ter-Vehn
,
The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics
(
Clarendon Press
,
Oxford
,
2004
).
5.
O. A.
Hurricane
,
D. A.
Callahan
,
D. T.
Casey
,
P. M.
Celliers
,
C.
Cerjan
,
E. L.
Dewald
,
T. R.
Dittrich
,
T.
Döppner
,
D. E.
Hinkel
,
L. F. Berzak
Hopkins
,
J. L.
Kline
,
S. Le
Pape
,
T.
Ma
,
A. G.
MacPhee
,
J. L.
Milovich
,
A.
Pak
,
H.-S.
Park
,
P. K.
Patel
,
B. A.
Remington
,
J. D.
Salmonson
,
P. T.
Springer
, and
R.
Tommasini
,
Nature
506
,
343
(
2014
).
6.
J. D.
Lawson
,
Proc. Phys. Soc. London, Ser. B
70
,
6
(
1957
).
7.
J. P.
Freidberg
,
Plasma Physics and Fusion Energy
(
Cambridge University Press
,
Cambridge
,
2007
).
8.
R.
Betti
,
P. Y.
Chang
,
B. K.
Spears
,
K. S.
Anderson
,
J.
Edwards
,
M.
Fatenejad
,
J. D.
Lindl
,
R. L.
McCrory
,
R.
Nora
, and
D.
Shvarts
,
Phys. Plasmas
17
,
058102
(
2010
).
9.
P. Y.
Chang
,
R.
Betti
,
B. K.
Spears
,
K. S.
Anderson
,
J.
Edwards
,
M.
Fatenejad
,
J. D.
Lindl
,
R. L.
McCrory
,
R.
Nora
, and
D.
Shvarts
,
Phys. Rev. Lett.
104
,
135002
(
2010
).
10.
C. D.
Zhou
and
R.
Betti
,
Phys. Plasmas
15
,
102707
(
2008
).
11.
B. K.
Spears
,
S.
Glenzer
,
M. J.
Edwards
,
S.
Brandon
,
D.
Clark
,
R.
Town
,
C.
Cerjan
,
R.
Dylla-Spears
,
E.
Mapoles
,
D.
Munro
,
J.
Salmonson
,
S.
Sepke
,
S.
Weber
,
S.
Hatchett
,
S.
Haan
,
P.
Springer
,
E.
Moses
,
J.
Kline
,
G.
Kyrala
, and
D.
Wilson
,
Phys. Plasmas
19
,
056316
(
2012
).
12.
M. C.
Herrmann
,
M.
Tabak
, and
J. D.
Lindl
,
Nucl. Fusion
41
,
99
(
2001
).
13.
A.
Kemp
,
J.
Meyer-ter-Vehn
, and
S.
Atzeni
,
Phys. Rev. Lett.
86
,
3336
(
2001
);
[PubMed]
W. K.
Levedahl
and
J. D.
Lindl
,
Nucl. Fusion
37
,
165
(
1997
).
14.
T. R.
Boehly
,
D. L.
Brown
,
R. S.
Craxton
,
R. L.
Keck
,
J. P.
Knauer
,
J. H.
Kelly
,
T. J.
Kessler
,
S. A.
Kumpan
,
S. J.
Loucks
,
S. A.
Letzring
,
F. J.
Marshall
,
R. L.
McCrory
,
S. F. B.
Morse
,
W.
Seka
,
J. M.
Soures
, and
C. P.
Verdon
,
Opt. Commun.
133
,
495
(
1997
).
15.
S.
Skupsky
,
R. W.
Short
,
T.
Kessler
,
R. S.
Craxton
,
S.
Letzring
, and
J. M.
Soures
,
J. Appl. Phys.
66
,
3456
(
1989
).
16.
J. D.
Lindl
,
Phys. Plasmas
2
,
3933
(
1995
).
17.
18.
W. M.
Manheimer
,
D. G.
Colombant
, and
J. H.
Gardner
,
Phys. Fluids
25
,
1644
(
1982
).
19.
R. D.
Richtmyer
,
Commun. Pure Appl. Math.
XIII
,
297
(
1960
).
20.
E. E.
Meshkov
,
Fluid Dyn.
4
,
101
(
1969
).
21.
L.
Rayleigh
,
Proc. London Math Soc.
XIV
,
170
(
1883
).
22.
G.
Taylor
,
Proc. R. Soc. London, Ser. A
201
,
192
(
1950
).
23.
H.
Takabe
,
K.
Mima
,
L.
Montierth
, and
R. L.
Morse
,
Phys. Fluids
28
,
3676
(
1985
).
24.
R.
Betti
,
V. N.
Goncharov
,
R. L.
McCrory
,
P.
Sorotokin
, and
C. P.
Verdon
,
Phys. Plasmas
3
,
2122
(
1996
).
26.
D.
Oron
,
U.
Alon
, and
D.
Shvarts
,
Phys. Plasmas
5
,
1467
(
1998
).
27.
S. W.
Haan
,
Phys. Fluids B
3
,
2349
(
1991
).
28.
29.
V.
Lobatchev
and
R.
Betti
,
Phys. Rev. Lett.
85
,
4522
(
2000
).
30.
L.
Spitzer
,
Physics of Fully Ionized Gases
(
Interscience Publishers
,
New York
,
1956
).
31.
C. D.
Zhou
and
R.
Betti
,
Phys. Plasmas
14
,
072703
(
2007
).
32.
J. F.
Myatt
,
Phys. Plasmas
21
,
055501
(
2014
).
33.
I. V.
Igumenshchev
,
D. H.
Edgell
,
V. N.
Goncharov
,
J. A.
Delettrez
,
A. V.
Maximov
,
J. F.
Myatt
,
W.
Seka
,
A.
Shvydky
,
S.
Skupsky
, and
C.
Stoeckl
,
Phys. Plasmas
17
,
122708
(
2010
).
34.
I. V.
Igumenshchev
,
W.
Seka
,
D. H.
Edgell
,
D. T.
Michel
,
D. H.
Froula
,
V. N.
Goncharov
,
R. S.
Craxton
,
L.
Divol
,
R.
Epstein
,
R.
Follett
,
J. H.
Kelly
,
T. Z.
Kosc
,
A. V.
Maximov
,
R. L.
McCrory
,
D. D.
Meyerhofer
,
P.
Michel
,
J. F.
Myatt
,
T. C.
Sangster
,
A.
Shvydky
,
S.
Skupsky
, and
C.
Stoeckl
,
Phys. Plasmas
19
,
056314
(
2012
).
35.
D. H.
Froula
,
I. V.
Igumenshchev
,
D. T.
Michel
,
D. H.
Edgell
,
R.
Follett
,
V.
Yu. Glebov
,
V. N.
Goncharov
,
J.
Kwiatkowski
,
F. J.
Marshall
,
P. B.
Radha
,
W.
Seka
,
C.
Sorce
,
S.
Stagnitto
,
C.
Stoeckl
, and
T. C.
Sangster
,
Phys. Rev. Lett.
108
,
125003
(
2012
).
36.
D. H.
Edgell
,
W.
Seka
,
J. A.
Delettrez
,
R. S.
Craxton
,
V. N.
Goncharov
,
I. V.
Igumenshchev
,
J. F.
Myatt
,
A. V.
Maximov
,
R. W.
Short
,
T. C.
Sangster
, and
R. E.
Bahr
,
Bull. Am. Phys. Soc.
54
,
145
(
2009
).
37.
W.
Seka
,
D. H.
Edgell
,
J. F.
Myatt
,
A. V.
Maximov
,
R. W.
Short
,
V. N.
Goncharov
, and
H. A.
Baldis
,
Phys. Plasmas
16
,
052701
(
2009
).
38.
R. W.
Short
,
Bull. Am. Phys. Soc.
53
,
245
(
2008
).
39.
D. T.
Michel
,
A. V.
Maximov
,
R. W.
Short
,
S. X.
Hu
,
J. F.
Myatt
,
W.
Seka
,
A. A.
Solodov
,
B.
Yaakobi
, and
D. H.
Froula
,
Phys. Rev. Lett.
109
,
155007
(
2012
).
40.
J. F.
Myatt
,
J.
Zhang
,
J. A.
Delettrez
,
A. V.
Maximov
,
R. W.
Short
,
W.
Seka
,
D. H.
Edgell
,
D. F.
DuBois
,
D. A.
Russell
, and
H. X.
Vu
,
Phys. Plasmas
19
,
022707
(
2012
).
41.
D. T.
Michel
,
A. V.
Maximov
,
R. W.
Short
,
J. A.
Delettrez
,
D.
Edgell
,
S. X.
Hu
,
I. V.
Igumenshchev
,
J. F.
Myatt
,
A. A.
Solodov
,
C.
Stoeckl
,
B.
Yaakobi
, and
D. H.
Froula
,
Phys. Plasmas
20
,
055703
(
2013
).
42.
T. C.
Sangster
,
V. N.
Goncharov
,
R.
Betti
,
P. B.
Radha
,
T. R.
Boehly
,
D. T.
Casey
,
T. J. B.
Collins
,
R. S.
Craxton
,
J. A.
Delettrez
,
D. H.
Edgell
,
R.
Epstein
,
C. J.
Forrest
,
J. A.
Frenje
,
D. H.
Froula
,
M.
Gatu-Johnson
,
V.
Yu. Glebov
,
D. R.
Harding
,
M.
Hohenberger
,
S. X.
Hu
,
I. V.
Igumenshchev
,
R.
Janezic
,
J. H.
Kelly
,
T. J.
Kessler
,
C.
Kingsley
,
T. Z.
Kosc
,
J. P.
Knauer
,
S. J.
Loucks
,
J. A.
Marozas
,
F. J.
Marshall
,
A. V.
Maximov
,
R. L.
McCrory
,
P. W.
McKenty
,
D. D.
Meyerhofer
,
D. T.
Michel
,
J. F.
Myatt
,
R. D.
Petrasso
,
S. P.
Regan
,
W.
Seka
,
W. T.
Shmayda
,
R. W.
Short
,
A.
Shvydky
,
S.
Skupsky
,
J. M.
Soures
,
C.
Stoeckl
,
W.
Theobald
,
V.
Versteeg
,
B.
Yaakobi
, and
J. D.
Zuegel
,
Phys. Plasmas
20
,
056317
(
2013
).
43.
P. B.
Radha
,
V. N.
Goncharov
,
T. J. B.
Collins
,
J. A.
Delettrez
,
Y.
Elbaz
,
V.
Yu. Glebov
,
R. L.
Keck
,
D. E.
Keller
,
J. P.
Knauer
,
J. A.
Marozas
,
F. J.
Marshall
,
P. W.
McKenty
,
D. D.
Meyerhofer
,
S. P.
Regan
,
T. C.
Sangster
,
D.
Shvarts
,
S.
Skupsky
,
Y.
Srebro
,
R. P. J.
Town
, and
C.
Stoeckl
,
Phys. Plasmas
12
,
032702
(
2005
).
44.
G. I.
Kerley
,
Phys. Earth Planet. Int.
6
,
78
(
1972
).
45.
G. I.
Kerley
, Sandia National Laboratory, Albuquerque, NM, Report SAND2003–3613 (
2003
).
46.
S. X.
Hu
,
B.
Militzer
,
V. N.
Goncharov
, and
S.
Skupsky
,
Phys. Rev. B
84
,
224109
(
2011
).
47.
R.
Kishony
and
D.
Shvarts
,
Phys. Plasmas
8
,
4925
(
2001
).
You do not currently have access to this content.