Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations.

1.
L.
Tonks
,
Phys. Rev. Lett.
37
,
1458
1483
(
1931
).
2.
R. S.
Harp
,
Appl. Phys. Lett.
4
(
11
),
186
188
(
1964
).
3.
R. S.
Harp
and
F. W.
Crawford
,
J. Appl. Phys.
35
(
12
),
3436
3446
(
1964
).
4.
K.
Takayama
,
H.
Ikegami
, and
S.
Miyazaki
,
Phys. Rev. Lett.
5
(
6
),
238
240
(
1960
).
5.
T.
Dote
and
T.
Ichimiya
,
J. Appl. Phys.
36
(
6
),
1866
1872
(
1965
).
6.
R. L.
Stenzel
,
Rev. Sci. Instrum.
47
,
603
607
(
1976
).
7.
R. B.
Piejak
,
V. A.
Godyak
,
R.
Garner
, and
B. M.
Alexandrovich
,
J. Appl. Phys.
95
,
3785
3791
(
2004
).
8.
S. G.
Bilen
,
J. M.
Haas
,
F. S.
Gulczinski
 III
, and
A. D.
Gallimore
, presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,
Los Angeles, California
,
1999
.
9.
H.
Kokura
,
K.
Nakamura
,
I. P.
Ghanashev
, and
H.
Sugai
,
Jpn. J. Appl. Phys.
38
,
5262
5266
(
1999
).
10.
T.
Shirakawa
,
Jpn. J. Appl. Phys.
32
,
5129
5135
(
1993
).
11.
D. D.
Blackwell
,
D. N.
Walker
, and
W. E.
Amatucci
,
Rev. Sci. Instrum.
76
,
023503
(
2005
).
12.
M.
Lapke
,
T.
Mussenbrock
, and
R. P.
Brinkmann
,
Appl. Phys. Lett.
93
(
5
),
051502
(
2008
).
13.
M.
Lapke
,
J.
Oberrath
,
C.
Schulz
,
R.
Storch
,
T.
Styrnoll
,
C.
Zietz
,
P.
Awakowicz
,
R. P.
Brinkmann
,
T.
Musch
,
T.
Mussenbrock
, and
I.
Rolfes
,
Plasma Sources Sci. Technol.
20
,
042001
(
2011
).
14.
D. N.
Walker
,
R. F.
Fernsler
,
D. D.
Blackwell
,
W. E.
Amatucci
, and
S. J.
Messer
,
Phys. Plasmas
13
,
032108
(
2006
), doi: .
15.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing.
(
John Wiley & Sons
, Inc.,
Hoboken
, NJ,
2005
).
16.
R. B.
Lobbia
and
A. D.
Gallimore
,
Rev. Sci. Instrum.
81
,
073503
(
2010
).
17.
D. D.
Blackwell
,
D. N.
Walker
,
S. J.
Messer
, and
W. E.
Amatucci
,
Phys. Plasmas
14
,
092105
(
2007
).
18.
D. N.
Walker
,
R. F.
Fernsler
,
D. D.
Blackwell
, and
W. E.
Amatucci
,
Phys. Plasmas
15
,
123506
(
2008
).
19.
D. N.
Walker
,
R. F.
Fernsler
,
D. D.
Blackwell
, and
W. E.
Amatucci
,
Phys. Plasmas
17
,
113503
(
2010
).
20.
V.
Kim
,
J. Propulsion Power
14
(
5
),
736
743
(
1998
).
21.
R. R.
Hofer
, Doctoral Dissertaion (
University of Michigan
,
2004
).
22.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
Wiley
,
2008
).
23.
E. Y.
Choueiri
,
Phys. Plasmas
8
(
4
),
1411
1426
(
2001
).
24.
R. B.
Lobbia
, Doctoral Dissertation (
University of Michigan
,
2010
).
25.
D.
King
,
D.
Tilley
,
R.
Aadland
,
K.
Nottingham
,
R.
Smith
,
C.
Roberts
,
V.
Hruby
,
B.
Pote
, and
J.
Monheiser
, presented at the 34th AIAA./ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,
Cleveland
,
OH
,
1998
.
26.
J. D.
Sommerville
, Doctoral Dissertaion (
Michigan Technological University
,
2009
).
27.
M.
Hayashi
,
J. Phys. D: Appl. Phys.
16
,
581
589
(
1983
).
28.
T.
Randolph
,
V.
Kim
,
K.
Kozubsky
,
V.
Zhurin
, and
M.
Day
, presented at the 23rd International Electric Propulsion Conference, Seatle, WA,
1993
.
29.
M. L. R.
Walker
, Doctoral Dissertation (
University of Michigan
,
2005
).
30.
I.
Boyd
and
R. A.
Dressler
,
J. Appl. Phys.
92
(
4
),
1764
1774
(
2002
).
31.
COMSOL Multiphysics [a commercial software product of the COMSOL Group. Descriptions of the electric currents module and the stationary solver are available in the COMSOL Multiphysics Reference Guide, pp. 265–414 and the COMSOL Multiphysics User's Guide, pp. 359, 659–666. COMSOL and COMSOL Multiphysics are registered trademarks of COMSOL AB. See http://www.comsol.com (accessed February
2014
)].
You do not currently have access to this content.