The generation dynamics and the structural characteristics of zonal flows are investigated in the double tearing mode (DTM) with antisymmetric shear flows. Two kinds of zonal flow oscillations are revealed based on reduced resistive magnetohydrodynamics simulations, which depend on the shear flow amplitudes corresponding to different DTM eigen mode states, elaborated by Mao et al. [Phys. Plasmas 20, 022114 (2013)]. For the weak shear flows below an amplitude threshold, vc, at which two DTM eigen states with antisymmetric or symmetric magnetic island structure are degenerated, the zonal flows grow oscillatorily in the Rutherford regime during the nonlinear evolution of the DTMs. It is identified that the oscillation mechanism results from the nonlinear interaction between the distorted islands and the zonal flows through the modification of shear flows. However, for the medium shear flows above vc but below the critical threshold of the Kelvin-Helmholtz instability, an oscillatory growing zonal flow occurs in the linear phase of the DTM evolution. It is demonstrated that the zonal flow oscillation originates from the three-wave mode coupling or a modulation instability pumped by two DTM eigen modes with the same frequency but opposite propagating direction. With the shear flows increasing, the amplitude of zonal flow oscillation increases first and then decreases, whilst the oscillation frequency as twice of the Doppler frequency shift increases. Furthermore, impacts of the oscillatory zonal flows on the nonlinear evolution of DTM islands and the global reconnection are also discussed briefly.

1.
J. Q.
Dong
,
S. M.
Mahajan
, and
W.
Horton
,
Phys. Plasmas
10
,
3151
(
2003
).
2.
K.
Kusano
and
T.
Maeshiro
,
Astrophys. J.
610
,
537
(
2004
).
3.
F. M.
Levinton
,
M. C.
Zarnstorff
,
S. H.
Batha
 et al.,
Phys. Rev. Lett.
75
,
4417
(
1995
).
4.
A.
Otto
and
G. T.
Birk
,
Phys. Fluids B
4
,
3811
(
1992
).
5.
M.
Yan
,
A.
Otto
,
D.
Muzzell
, and
L. C.
Lee
,
J. Geophys. Res.: Space Phys.
99
,
8657
, doi: (
1994
).
6.
C.
Shen
,
Z.
Liu
, and
H.
Zhang
,
Phys. Lett. A
249
,
87
(
1998
).
7.
T. H.
Stix
,
Phys. Rev. Lett.
36
,
521
(
1976
).
8.
Z.
Chang
,
W.
Park
, and
E. D.
Fredrickson
,
Phys. Rev. Lett.
77
,
3553
(
1996
).
9.
M.
de Baar
,
G.
Hogeweij
,
N. L.
Cardozo
,
A.
Oomens
, and
F.
Schller
,
Phys. Rev. Lett.
78
,
4573
(
1997
).
10.
F.
Haas
and
A.
Thyagaraja
,
Europhys. Lett.
19
,
285
(
1992
).
11.
Ya. I.
Kolesnichenko
and
Yu. V.
Yakovenko
,
Nucl. Fusion
32
,
449
(
1992
).
12.
Y.
Ishii
,
M.
Azumi
, and
Y.
Kishimoto
,
Phys. Rev. Lett.
89
,
205002
(
2002
).
13.
Z. X.
Wang
,
X. G.
Wang
,
J. Q.
Dong
,
Y. A.
Lei
,
Y. X.
Long
,
Z. Z.
Mou
, and
W. X.
Qu
,
Phys. Rev. Lett.
99
,
185004
(
2007
).
14.
M.
Janvier
,
Y.
Kishimoto
, and
J. Q.
Li
,
Nucl. Fusion
51
,
083016
(
2011
).
15.
M.
Janvier
,
Y.
Kishimoto
, and
J. Q.
Li
,
Phys. Rev. Lett.
107
,
195001
(
2011
).
16.
Z. X.
Wang
,
X. G.
Wang
,
J. Q.
Dong
,
Y.
Kishimoto
, and
J. Q.
Li
,
Phys. Plasmas
15
,
082109
(
2008
).
17.
J. D.
Callen
,
A. J.
Cole
, and
C. C.
Hegna
,
Nucl. Fusion
49
,
085021
(
2009
).
18.
R.
Coelho
and
E.
Lazzaro
,
Phys. Plasmas
14
,
012101
(
2007
).
19.
A.
Kakurin
and
I.
Orlovskiy
,
Plasma Phys. Rep.
35
,
93
(
2009
).
20.
L.
Ofman
,
Phys. Fluids B
4
,
2751
(
1992
).
21.
L.
Wei
and
Z. X.
Wang
,
Nucl. Fusion
51
,
123005
(
2011
).
22.
R. L.
Dewar
and
M.
Persson
,
Phys. Fluids B
5
,
4273
(
1993
).
23.
M.
Persson
and
R. L.
Dewar
,
Phys. Plasmas
1
,
1256
(
1994
).
24.
A.
Mao
,
J. Q.
Li
,
Y.
Kishimoto
, and
J. Y.
Liu
,
Phys. Plasmas
20
,
022114
(
2013
).
25.
X. Q.
Wang
,
X. G.
Wang
,
W. B.
Xu
, and
Z. X.
Wang
,
Phys. Plasmas
18
,
012102
(
2011
).
26.
M. A.
Pedrosa
,
B. A.
Carreras
,
C.
Hidalgo
,
C.
Silva
,
M.
Hron
,
L.
García
,
J. A.
Alonso
,
I.
Calvo
,
J. L.
de Pablos
, and
J.
Stöckel
,
Plasma Phys. Controlled Fusion
49
,
B303
(
2007
).
27.
C.
Hidalgo
,
C.
Silva
,
M.
Pedrosa
,
E.
Snchez
,
H.
Fernandes
, and
C.
Varandas
,
Phys. Rev. Lett.
83
,
2203
(
1999
).
28.
S.
Coda
,
M.
Porkolab
, and
K.
Burrell
,
Phys. Rev. Lett.
86
,
4835
(
2001
).
29.
A.
Fujisawa
,
K.
Itoh
,
H.
Iguchi
,
K.
Matsuoka
,
S.
Okamura
,
A.
Shimizu
,
T.
Minam
,
Y.
Yoshimura
,
K.
Nagaoka
,
C.
Takahashi
,
M.
Kojima
,
H.
Nakano
,
S.
Ohsima
,
S.
Nishimura
,
M.
Isobe
,
C.
Suzuki
,
T.
Akiyama
,
K.
Ida
,
K.
Toi
,
S.-I.
Itoh
, and
P.
Diamond
,
Phys. Rev. Lett.
93
,
165002
(
2004
).
30.
P. H.
Diamond
,
S.-I.
Itoh
,
K.
Itoh
, and
T. S.
Hahm
,
Plasma Physics Controlled Fusion
47
,
R35
(
2005
).
31.
J. Q.
Li
and
Y.
Kishimoto
,
Commun. Comput. Phys.
4
,
1245
(
2008
).
32.
F.
Zonca
and
L.
Chen
,
Europhys. Lett.
83
,
35001
(
2008
).
33.
Z.
Andrushchenko
,
AIP Conf. Proc.
669
,
650
653
(
2003
).
34.
A.
Das
,
AIP Conf. Proc.
669
,
731
734
(
2003
).
35.
D.
Grasso
,
L.
Margheriti
,
F.
Porcelli
, and
C.
Tebaldi
,
Plasma Phys. Controlled Fusion
48
,
L87
(
2006
).
36.
K.
Uzawa
,
A.
Ishizawa
, and
N.
Nakajima
,
Phys. Plasmas
17
,
042508
(
2010
).
37.
T.
Voslion
,
O.
Agullo
,
P.
Beyer
,
M.
Yagi
,
S.
Benkadda
,
X.
Garbet
,
K.
Itoh
, and
S.-I.
Itoh
,
Phys. Plasmas
18
,
062302
(
2011
).
38.
J.
Li
,
Y.
Kishimoto
,
Y.
Kouduki
,
Z.
Wang
, and
M.
Janvier
,
Nucl. Fusion
49
,
95007
(
2009
).
39.
A.
Ishizawa
and
N.
Nakajima
,
Phys. Plasmas
14
,
040702
(
2007
).
40.
Z. X.
Wang
,
L.
Wei
,
X. G.
Wang
, and
Y.
Liu
,
Phys. Plasmas
18
,
050701
(
2011
).
41.
A.
Bierwage
,
Q.
Yu
, and
S.
Günter
,
Phys. Plasmas
14
,
010704
(
2007
).
42.
A.
Mao
,
J.
Li
,
Y.
Kishimoto
, and
J.
Liu
,
Plasma Fusion Res.
8
,
2403121
(
2013
).
43.
P. L.
Pritchett
,
Y. C.
Lee
, and
J. F.
Drake
,
Phys. Fluids
23
,
1368
(
1980
).
44.
J. Q.
Li
,
Y.
Kishimoto
,
N.
Miyato
,
T.
Matsumoto
, and
J. Q.
Dong
,
Nucl. Fusion
45
,
1293
(
2005
).
45.
J. Q.
Li
and
Y.
Kishimoto
,
Phys. Plasmas
9
,
1241
(
2002
).
You do not currently have access to this content.