Using 2D Molecular Dynamics simulation, the equilibrium and dynamical properties of a gravitationally equilibrated Yukawa liquid are investigated. We observe that due to asymmetry introduced in one direction by gravity, several interesting features arise. For example, for a given value of coupling parameter Γ, screening parameter κ, and according to a chosen value of gravitational force g (say in y-direction), the system is seen to exhibit super-, sub- or normal diffusion. Interestingly, x-averaged density profiles, unlike a barotropic fluid, acquires sharp, free surface with scale free linear y-dependence. As can be expected for a system with macroscopic gradients, self-diffusion calculated from Green-Kubo’s formalism does not agree with that obtained from Einstein-Smoluchowski diffusion. A 2D angular-radial pair correlation function g(r, θ) clearly indicates asymmetric features induced by gravity. We observe that due to compression in y-direction, though in liquid state for all values of gravity considered, the transverse mode is found to predominant as compared to the longitudinal mode, leading to a novel Anisotropic Solid-like Yukawa liquid.

1.
G. E.
Morfill
and
A. V.
Ivlev
,
Rev. Mod. Phys.
81
,
1353
(
2009
).
2.
V. E.
Fortov
,
A. V.
Ivlev
,
S. A.
Khrapak
,
A. G.
Khrapak
, and
G. E.
Morfill
,
Phys. Rep.
421
,
1
(
2005
).
3.
S. A.
Khrapak
,
A. V.
Ivlev
, and
G. E.
Morfill
,
Phys. Rev. E
70
,
056405
(
2004
).
4.
G.
Kalman
,
M.
Rosenberg
, and
H. E.
DeWitt
,
Phys. Rev. Lett.
84
,
6030
(
2000
).
5.
D.
Samsonov
and
J.
Goree
,
Phys. Rev. E
59
,
1047
(
1999
).
6.
R. L.
Merlino
and
J. A.
Goree
,
Phys. Today
57
(
7
),
32
(
2004
).
7.
J. R.
Hill
and
D. A.
Mendis
,
Moon Planets
24
,
431
(
1981
).
8.
C. K.
Goertz
and
G. E.
Morfill
,
Icarus
53
,
219
(
1983
).
9.
C. K.
Goertz
and
L.
Shan
,
Geophys. Res. Lett.
15
,
84
, doi: (
1988
).
10.
A.
Melzer
,
V. A.
Schweigert
, and
A.
Piel
,
Phys. Scr.
61
,
494
(
2000
).
11.
G. A.
Hebner
,
M. E.
Riley
, and
B. M.
Marder
,
Phys. Rev. E
68
,
016403
(
2003
).
12.
G. A.
Hebner
and
M. E.
Riley
,
Phys. Rev. E
69
,
026405
(
2004
).
13.
A.
Piel
and
A.
Melzer
,
Plasma Phys. Controlled Fusion
44
,
R1
(
2002
).
15.
Z.
Donkó
,
G. J.
Kalman
, and
P.
Hartmann
,
J. Phys.: Condens. Matter
20
,
413101
(
2008
).
16.
P.
Hartmann
,
G. J.
Kalman
,
Z.
Donkó
, and
K.
Kutasi
,
Phys. Rev. E
72
,
026409
(
2005
).
17.
A.
Melzer
,
T.
Trottenberg
, and
A.
Piel
,
Phys. Lett. A
191
,
301
(
1994
).
18.
J. H.
Chu
and
I.
Lin
,
Phys. Rev. Lett.
72
,
4009
4012
(
1994
).
19.
J. B.
Pieper
,
J.
Goree
, and
R. A.
Quinn
,
J. Vac. Sci. Technol. A
14
,
519
(
1996
).
20.
O.
Arp
,
D.
Block
,
M.
Bonitz
,
H.
Fehske
,
V.
Golubnychiy
,
S.
Kosse
,
P.
Ludwig
,
A.
Melzer
, and
A.
Piel
,
J. Phys.: Conf. Ser.
11
,
234
(
2005
).
21.
L.-J.
Hou
,
A.
Piel
, and
P. K.
Shukla
,
Phys. Rev. Lett.
102
,
085002
(
2009
).
22.
J.
Ashwin
and
R.
Ganesh
,
Phys. Rev. Lett.
104
,
215003
(
2010
).
23.
D.
Levesque
and
L.
Verlet
,
J. Stat. Phys.
72
,
519
(
1993
).
24.
25.
G.
Ciccotti
,
W. G.
Hoover
, and
Societá Italiana di Fisica
, “
Defects in solids
,” in
Molecular Dynamics Simulation of Statistical Mechanical Systems: Varenna on Lake Como, Villa Monastero, 23 July–2 August 1985
(
North-Holland
,
1986
).
26.
D. J.
Evans
,
W. G.
Hoover
,
B. H.
Failor
,
B.
Moran
, and
A. J. C.
Ladd
,
Phys. Rev. A
28
,
1016
(
1983
).
27.
D. J.
Evans
,
J. Chem. Phys.
78
,
3297
(
1983
).
28.
V.
Nosenko
and
J.
Goree
,
Phys. Rev. Lett.
93
(
15
),
155004
(
2004
).
29.
30.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications (Computational Science)
, 1st ed. (
Academic Press
,
1996
), Chap. 4, pp.
78
81
.
31.
H.
Ohta
and
S.
Hamaguchi
,
Phys. Plasmas
7
,
4506
4514
(
2000
).
You do not currently have access to this content.