Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

1.
J. A.
Eichmeier
and
M. K.
Thumm
,
Vacuum Electronic: Components and Devices
(
Springer
,
2008
).
2.
H.
Bluhm
,
Pulsed Power Systems: Principles and Applications
(
Springer
,
2006
).
3.
A. S.
Gilmour
,
Microwave Tubes
(
Artech House
,
1986
).
5.
J. W.
Luginsland
,
Y. Y.
Lau
, and
R. M.
Gilgenbach
,
Phys. Rev. Lett.
77
,
4668
(
1996
).
7.
W. S.
Koh
,
L. K.
Ang
, and
T. J. T.
Kwan
,
Phys. Plasmas
12
,
053107
(
2005
).
8.
A.
Valfells
,
D.
Feldman
,
M.
Virgo
,
P. G.
O'Shea
, and
Y. Y.
Lau
,
Phys. Plasmas
9
,
2377
(
2002
).
9.
W. S.
Koh
,
L. K.
Ang
, and
T. J. T.
Kwan
,
Phys. Plasmas
13
,
063102
(
2006
).
10.
L. K.
Ang
and
P.
Zhang
,
Phys. Rev. Lett.
98
,
164802
(
2007
).
11.
C. K.
Birdsall
and
W. B.
Bridges
,
Electron Dynamics of Diode Regions
(
Academic
,
New York
,
1966
).
12.
R. B.
Miller
,
An Introduction to the Physics of Intense Charged Particle Beams
(
Plenum Press
,
1982
).
13.
P.
Zhang
,
W. S.
Koh
,
L. K.
Ang
, and
S. H.
Chen
,
Phys. Plasmas
15
,
063105
(
2008
).
14.
E. W. B.
Gill
,
Philos. Mag.
49
,
993
(
1925
).
15.
Yu. N.
Garstein
and
P. S.
Ramesh
,
J. Appl. Phys.
83
,
2958
(
1998
);
Yu. N.
Garstein
, and
P. S.
Ramesh
,
J. Appl. Phys.
84
,
1158
(
1998
);
Yu. N.
Garstein
, and
P. S.
Ramesh
,
Phys. Rev. E
60
,
1069
(
1999
).
16.
W. B.
Bridges
,
J. I.
Frey
, and
C. K.
Birdsall
,
IEEE Trans.
ED-12
,
264
(
1965
).
17.
C.
Prokop
,
P.
Piot
,
M. C.
Lin
, and
P.
Stoltz
,
Appl. Phys. Lett.
96
,
151502
(
2010
).
18.
P.
Siegel
,
IEEE Trans. Microwave Theory Tech.
50
,
910
(
2002
).
19.
P. R.
Ribic
and
G.
Margaritondo
,
J. Phys. D: Appl. Phys.
45
,
213001
(
2012
).
20.
F. J.
García de Abajo
,
Rev. Mod. Phys.
82
,
209
(
2010
).
21.
C.
Pellegrini
,
Eur. Phys. J. H
37
,
659
708
(
2012
).
22.
B. W. J.
McNeil
and
N. R.
Thompson
,
Nature Photon.
4
,
814
(
2010
).
23.
P.
Emma
,
R.
Akre
,
J.
Arthur
,
R.
Bionta
,
C.
Bostedt
,
J.
Bozek
,
A.
Brachmann
,
P.
Bucksbaum
,
R.
Coffee
,
F.-J.
Decker
,
Y.
Ding
,
D.
Dowell
,
S.
Edstrom
,
A.
Fisher
,
J.
Frisch
,
S.
Gilevich
,
J.
Hastings
,
G.
Hays
,
Ph.
Hering
,
Z.
Huang
,
R.
Iverson
,
H.
Loos
,
M.
Messerschmidt
,
A.
Miahnahri
,
S.
Moeller
,
H.-D.
Nuhn
,
G.
Pile
,
D.
Ratner
,
J.
Rzepiela
,
D.
Schultz
,
T.
Smith
,
P.
Stefan
,
H.
Tompkins
,
J.
Turner
,
J.
Welch
,
W.
White
,
J.
Wu
,
G.
Yocky
, and
J.
Galayda
,
Nature Photon.
4
,
641
(
2010
).
24.
T.
Shintake
,
H.
Tanaka
,
T.
Hara
,
T.
Tanaka
,
K.
Togawa
,
M.
Yabashi
,
Y.
Otake
,
Y.
Asano
,
T.
Bizen
,
T.
Fukui
,
S.
Goto
,
A.
Higashiya
,
T.
Hirono
,
N.
Hosoda
,
T.
Inagaki
,
S.
Inoue
,
M.
Ishii
,
Y.
Kim
,
H.
Kimura
,
M.
Kitamura
,
T.
Kobayashi
,
H.
Maesaka
,
T.
Masuda
,
S.
Matsui
,
T.
Matsushita
,
X.
Maréchal
,
M.
Nagasono
,
H.
Ohashi
,
T.
Ohata
,
T.
Ohshima
,
K.
Onoe
,
K.
Shirasawa
,
T.
Takagi
,
S.
Takahashi
,
M.
Takeuchi
,
K.
Tamasaku
,
R.
Tanaka
,
Y.
Tanaka
,
T.
Tanikawa
,
T.
Togashi
,
S.
Wu
,
A.
Yamashita
,
K.
Yanagida
,
C.
Zhang
,
H.
Kitamura
, and
T.
Ishikawa
,
Nature. Photon.
2
,
555
(
2008
).
25.
T.
Terasawa
,
T.
Dvorak
,
S.
Ip
,
G.
Raman
,
J.
Lau
, and
T. A.
Trikalinos
,
Ann. Intern. Med.
151
,
556
565
(
2009
).
26.
M.
Goitein
,
A. J.
Lomax
, and
E. S.
Pedroni
,
Phys. Today
55
(9),
45
(
2002
).
27.
J. A.
Efstathiou
,
Br. J. Cancer
108
,
1225
(
2013
).
28.
T. L.
Lin
,
W. T.
Chen
,
W. C.
Liu
, and
Y.
Hu
,
J. Appl. Phys.
68
,
2038
(
1990
).
29.
H.
Sze
,
J.
Benford
,
W.
Woo
, and
B.
Harteneck
,
Phys. Fluids
29
,
3873
(
1986
).
30.
M. V.
Fazion
,
R. F.
Hoeberling
, and
J.
Kinross-Eright
,
J. Appl. Phys.
65
,
1321
(
1989
).
31.
A.
Kadish
,
R. J.
Faehl
, and
C. M.
Snell
,
Phys. Fluids
29
,
4192
(
1986
).
You do not currently have access to this content.