Some essential features of the ion plasma wave in both kinetic and fluid descriptions are presented. The wave develops at wavelengths shorter than the electron Debye radius. Thermal motion of electrons at this scale is such that they overshoot the electrostatic potential perturbation caused by ion bunching, which consequently propagates as an unshielded wave, completely unaffected by electron dynamics. So in the simplest fluid description, the electrons can be taken as a fixed background. However, in the presence of magnetic field and for the electron gyro-radius shorter than the Debye radius, electrons can participate in the wave and can increase its damping rate. This is determined by the ratio of the electron gyro-radius and the Debye radius. In interpenetrating plasmas (when one plasma drifts through another), the ion plasma wave can easily become growing and this growth rate is quantitatively presented for the case of an argon plasma.

1.
G. M.
Sessler
and
G. A.
Pearson
,
Phys. Rev.
162
,
108
(
1967
).
2.
T.
Kurasawa
and
K.
Matsuura
,
J. Phys. Soc. Jpn.
25
,
562
(
1968
).
3.
B. S.
Bauer
,
R. P.
Drake
,
K. G.
Estabrook
,
R. G.
Watt
,
M. D.
Wilke
, and
S. A.
Baker
,
Phys. Rev. Lett.
74
,
3604
(
1995
).
4.
B. S.
Bauer
,
R. P.
Drake
,
K. G.
Estabrook
,
J. F.
Camacho
,
R. G.
Watt
,
M. D.
Wilke
,
G.
Busch
,
S.
Caldwell
, and
S. A.
Baker
,
Phys. Plasmas
2
,
2207
(
1995
).
5.
G. M.
Sessler
,
Phys. Rev. Lett.
17
,
243
(
1966
).
6.
A.
Vermeer
and
J.
Kistemaker
,
Plasma Phys.
12
,
95
(
1970
).
7.
H. J.
Doucet
and
D.
Gresillon
,
Phys. Fluids
13
,
773
(
1970
).
8.
M.
Krämer
,
K.
Lucks
,
H.
Schluter
, and
F.
Wieseman
,
Phys. Lett. A
96
,
195
(
1983
).
9.
R. J.
Armstrong
,
Plasma Phys. Contrib. Fusion
28
,
1569
(
1986
).
10.
W.
Baumjohann
and
R. A.
Treumann
,
Basic Space Plasma Physics
(
Imperial College Press
,
Lomdon
,
1996
), p.
162
,
261
.
11.
J. A.
Bittencourt
,
Fundamentals of Plasma Physics
(
Springer
,
New York
,
2004
), p.
456
.
12.
A. O.
Benz
,
Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae
(
Kluwer
,
Dordrecht
,
2002
), p.
106
, 279.
13.
M. E.
Jones
and
R.
Keinigs
,
IEEE Trans. Plasma Sci.
PS-15
,
203
(
1987
).
14.
R. P.
Drake
and
R. S.
Marjoribanks
,
Phys. Plasmas
9
,
267
(
2002
).
15.
J.
Vranjes
,
S.
Poedts
, and
Z.
Ehsan
,
Phys. Plasmas
16
,
074501
(
2009
).
16.
F. F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion
(
Plenum Press
,
New York
,
1984
).
17.
J.
Vranjes
,
M. Y.
Tanaka
, and
S.
Poedts
,
Phys. Plasmas
13
,
122103
(
2006
).
18.
J.
Vranjes
,
Astron. Astrophys.
554
,
A90
(
2013
).
19.
J.
Vranjes
,
Phys. Plasmas
18
,
084501
(
2011
).
20.
G. E.
Brueckner
and
J. D. F.
Bartoe
,
Astrophys. J.
272
,
329
(
1983
).
21.
J.
Vranjes
,
M.
Kono
,
S.
Poedts
, and
M. Y.
Tanaka
,
Phys. Plasmas
15
,
092107
(
2008
).
22.
J.
Vranjes
and
S.
Poedts
,
Phys. Plasmas
17
,
022104
(
2010
).
23.
B. M.
Smirnov
,
Plasma Processes and Plasma Kinetics
(
Wiley
,
Weinheim
,
2007
), p.
405
.
24.
D. G.
Swanson
,
Plasma Waves
(
Academic Press
,
London
,
1989
), p.
327
.
25.
T. E.
Cravens
,
Physics of Solar System Plasmas
(
Cambridge University Press
,
Cambridge
,
1997
), p.
228
.
26.
G. R.
Smith
and
A. N.
Kaufman
,
Phys. Rev. Lett.
34
,
1613
(
1975
).
27.
G. R.
Smith
and
A. N.
Kaufman
,
Phys. Fluids
21
,
2230
(
1978
).
You do not currently have access to this content.