We investigate the linear theory of the ion-temperature-gradient (ITG) mode, with the goal of developing a general understanding that may be applied to stellarators. We highlight the Wendelstein 7X (W7-X) device. Simple fluid and kinetic models that follow closely from existing literature are reviewed and two new first-principle models are presented and compared with results from direct numerical simulation. One model investigates the effect of regions of strong localized shear, which are generic to stellarator equilibria. These “shear spikes” are found to have a potentially significant stabilizing affect on the mode; however, the effect is strongest at short wavelengths perpendicular to the magnetic field, and it is found to be significant only for the fastest growing modes in W7-X. A second model investigates the long-wavelength limit for the case of negligible global magnetic shear. The analytic calculation reveals that the effect of the curvature drive enters at second order in the drift frequency, confirming conventional wisdom that the ITG mode is slab-like at long wavelengths. Using flux tube simulations of a zero-shear W7-X configuration, we observe a close relationship to an axisymmetric configuration at a similar parameter point. It is concluded that scale lengths of the equilibrium gradients constitute a good parameter space to characterize the ITG mode. Thus, to optimize the magnetic geometry for ITG mode stability, it may be fruitful to focus on local parameters, such as the magnitude of bad curvature, connection length, and local shear at locations of bad curvature (where the ITG mode amplitude peaks).

1.
H. E.
Mynick
,
N.
Pomphrey
, and
P.
Xanthopoulos
,
Phys. Rev. Lett.
105
,
095004
(
2010
).
2.
J. H. E.
Proll
,
P.
Helander
,
J. W.
Connor
, and
G. G.
Plunk
,
Phys. Rev. Lett.
108
,
245002
(
2012
).
3.
P.
Helander
,
J. H. E.
Proll
, and
G. G.
Plunk
,
Phys. Plasmas
20
,
122505
(
2013
).
4.
J. H. E.
Proll
,
P.
Xanthopoulos
, and
P.
Helander
,
Phys. Plasmas
20
,
122506
(
2013
).
5.
P.
Helander
,
C. D.
Beidler
,
T. M.
Bird
,
M.
Drevlak
,
Y.
Feng
,
R.
Hatzky
,
F.
Jenko
,
R.
Kleiber
,
J. H. E.
Proll
,
Y.
Turkin
, and
P.
Xanthopoulos
,
Plasma Phys. Controlled Fusion
54
,
124009
(
2012
).
6.
Note that the eikonal representation is only appropriate when variation of the mode occurs on a smaller scale than that of equilibrium quantities like magnetic curvature and shear. Although it is unknown to what extent this is satisfied in the radial direction, recent full-flux-surface simulations have revealed a loss of scale separation in the binormal direction for modes with small k. However, details of this will be left for a future paper.
7.
K. V.
Roberts
and
J. B.
Taylor
,
Phys. Fluids
8
,
315
(
1965
).
8.
J. W.
Connor
,
R. J.
Hastie
, and
J. B.
Taylor
,
Plasma Phys.
22
,
757
(
1980
).
9.
R. L.
Dewar
and
A. H.
Glasser
,
Phys. Fluids
26
,
3038
(
1983
).
10.
J. Y.
Kim
and
M.
Wakatani
,
Phys. Plasmas
2
,
1012
(
1995
).
11.
D.-I.
Choi
and
W.
Horton
,
Phys. Fluids
23
,
356
(
1980
).
12.
J. T. M.
Antonsen
,
J. F.
Drake
,
P. N.
Guzdar
,
A. B.
Hassam
,
Y. T.
Lau
,
C. S.
Liu
, and
S. V.
Novakovskii
,
Phys. Plasmas
3
,
2221
(
1996
).
13.
B. B.
Kadomtsev
and
O. P.
Pogutse
,
Rev. Plasmas Phys.
5
,
249
(
1995
).
14.
H.
Biglari
,
P. H.
Diamond
, and
M. N.
Rosenbluth
,
Phys. Fluids B: Plasma Phys.
1
,
109
(
1989
).
15.
S. C.
Cowley
,
R. M.
Kulsrud
, and
R.
Sudan
,
Phys. Fluids B
3
,
2767
(
1991
).
16.
J.
Chowdhury
,
S.
Brunner
,
R.
Ganesh
,
X.
Lapillonne
,
L.
Villard
, and
F.
Jenko
,
Phys. Plasmas
19
,
102508
(
2012
).
17.
J. T. M.
Antonsen
and
B.
Lane
,
Phys. Fluids
23
,
1205
(
1980
).
18.
J. W.
Horton
,
D.-I.
Choi
, and
W. M.
Tang
,
Phys. Fluids
24
,
1077
(
1981
).
19.
F.
Romanelli
,
Phys. Fluids B: Plasma Phys.
1
,
1018
(
1989
).
20.
F.
Romanelli
,
L.
Chen
, and
S.
Briguglio
,
Phys. Fluids B: Plasma Phys.
3
,
2496
(
1991
).
21.
A.
Bhattacharjee
,
J. E.
Sedlak
,
P. L.
Similon
,
M. N.
Rosenbluth
, and
D. W.
Ross
,
Phys. Fluids
26
,
880
(
1983
).
22.
J.
Candy
,
R. E.
Waltz
, and
M. N.
Rosenbluth
,
Phys. Plasmas
11
,
1879
(
2004
).
23.
B.
McMillan
and
R.
Dewar
,
Nucl. Fusion
46
,
477
(
2006
).
24.
J. W.
Connor
and
R. J.
Hastie
,
Plasma Phys. Controlled Fusion
46
,
1501
(
2004
).
25.
R. E.
Waltz
and
A. H.
Boozer
,
Phys. Fluids B: Plasma Phys.
5
,
2201
(
1993
).
26.
P.
Xanthopoulos
,
W. A.
Cooper
,
F.
Jenko
,
Y.
Turkin
,
A.
Runov
, and
J.
Geiger
,
Phys. Plasmas
16
,
082303
(
2009
).
27.
Note that the limit of weak shear connected continuously with the zero shear case in Sec. IV A as localized modes become delocalized slab modes; see also Candy et al22 
28.
Note that the toroidal 2π/N-periodicity for stellarators formally introduces the possibility of a nonzero Bloch wavenumber kζ=nπ/N, with n ranging 0 to N – 1, but this formal treatment is beyond the scope of the present work.
You do not currently have access to this content.