Some works dealing with the long-time behavior of interacting particle systems are reviewed and put into perspective, with focus on the classical Kolmogorov–Arnold–Moser theory and recent results of Landau damping in the nonlinear perturbative regime, obtained in collaboration with Clément Mouhot. Analogies are discussed, as well as new qualitative insights in the theory. Finally, the connection with a more recent work on the inviscid Landau damping near the Couette shear flow, by Bedrossian and Masmoudi, is briefly discussed.
REFERENCES
1.
N.
Simányi
, Invent. Math.
177
, 381
(2009
). 2.
A. N.
Kolmogorov
, in Proceedings of the International Congress of Mathematicians
(Amsterdam
, 1954
), Vol. 1, p. 315; English translation reprinted as an Appendix in R. H. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin/Cummings, 1978), p. 741
. 3.
J.
Féjoz
, “ Démonstration du ‘théorème d'Arnold’ sur la stabilité du système planétaire (d'après Herman)
,” in Ergodic Theory and Dynamical Systems
(Cambridge University Press
, Cambridge
, 2004
), Vol. 24
, pp. 1521
–1582
. 4.
5.
6.
C.
Cercignani
, Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations
(Cambridge University Press
, 2000
). 7.
C.
Cercignani
, R.
Illner
, and M.
Pulvirenti
, The Mathematical Theory of Rarefied Gases
(Springer-Verlag
, 1994
). 8.
C.
Villani
, Handbook of Mathematical Fluid Dynamics
(North-Holland
, 2002
), Vol. I, p. 71
. 9.
E. M.
Lifshitz
and L. P.
Pitaevskiĭ
, Course of Theoretical Physics
(Pergamon Press
, 1981
), Vol. 10. 10.
J.
Binney
and S.
Tremaine
, Galactic Dynamics
(Princeton University Press
, 2008
). 11.
O. E.
Lanford
III, Dynamical Systems, Theory and Applications
, Lecture Notes in Physics (Springer
, 1975
), Vol. 38
, p. 1
. 12.
13.
W.
Braun
and K.
Hepp
, Commun. Math. Phys.
56
, 101
(1977
). 14.
15.
H.
Neunzert
, Kinetic Theories and the Boltzmann Equation
, Lecture Notes in Mathematics (Springer
, 1984
), Vol. 1048
, p. 60
. 16.
M.
Hauray
and P.-E.
Jabin
, Arch. Ration. Mech. Anal.
183
(3
), 489
(2007
). 17.
C.
Villani
, Entropy Methods for the Boltzmann Equation
, Lecture Notes in Mathematics (Springer
, 2008
), Vol. 1916
, p. 1
. 18.
C.
Villani
, Hypocoercivity
(Memoirs of the American Mathematical Society
, 2009
), Vol. 202
, No. 950
. 19.
C.
Mouhot
and C.
Villani
, Acta Math.
207
, 29
(2011
). 20.
G.
Backus
, J. Math. Phys.
1
, 178
(1960
). 21.
C.
Villani
, “ Landau damping
,” in Numerical Models of Fusion
(Panoramas et Synthèses
, Société Mathématique de France
, 2013
), p. 237
. 22.
23.
24.
F.
Bouchet
and H.
Morita
, Physica D
239
, 948
(2010
). 25.
26.
Zh.
Lin
and Ch.
Zeng
, Comm. Math. Phys.
306
, 291
(2011
). 27.
Zh.
Lin
and Ch.
Zeng
, Arch. Rat. Mech. Anal.
200
, 1075
(2011
). © 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.