Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particles of more than a few tens of nanometres in diameter.

1.
A.
Bouchoule
,
Dusty Plasmas: Physics, Chemistry and Technological impacts in Plasma Processing
(
Wiley
,
New York
,
1999
).
2.
G. E.
Morfill
and
A. V.
Ivlev
,
Rev. Mod. Phys.
81
,
1353
(
2009
).
3.
C. K.
Goertz
and
G.
Morfill
,
Icarus
53
,
219
(
1983
);
C. J.
Mitchell
,
M.
Horanyi
,
O.
Havnes
, and
C. C.
Porco
,
Science
311
,
1587
(
2006
).
[PubMed]
4.
G. S.
Selwyn
,
J.
Singh
, and
R. S.
Bennett
,
J. Vac. Sci. Technol. A
7
,
2758
(
1989
);
L.
Boufendi
,
J.
Gaudin
,
S.
Huet
,
G.
Viera
, and
M.
Dudemaine
,
Appl. Phys. Lett.
79
,
4301
(
2001
);
D.
Vollath
,
J. Nanopart. Res.
10
,
39
(
2008
).
5.
J.
Winter
,
Plasma Phys. Controlled Fusion
40
,
1201
(
1998
);
J.
Sharpe
,
D.
Petti
, and
H.-W.
Bartels
,
Fusion Eng. Des.
63–64
,
153
(2002);
C.
Arnas
,
C.
Pardanaud
,
C.
Martin
,
P.
Roubin
,
G. D.
Temmerman
, and
G.
Counsell
,
J. Nucl. Mater.
401
,
130
(
2010
).
6.
A.
Bouchoule
and
L.
Boufendi
,
Plasma Sources Sci. Technol.
2
,
204
(
1993
).
7.
C.
Hollenstein
,
Plasma Phys. Controlled Fusion
42
,
R93
(
2000
).
8.
C.
Hollenstein
,
J. L.
Dorier
,
J.
Dutta
,
L.
Sansonnens
, and
A. A.
Howling
,
Plasma Sources Sci. Technol.
3
,
278
(
1994
),.
9.
Y.
Watanabe
,
J. Phys. D: Appl. Phys.
39
,
R329
(
2006
).
10.
C.
Deschenaux
,
A.
Affolter
,
D.
Magni
,
C.
Hollenstein
, and
P.
Fayet
,
J. Phys. D: Appl. Phys.
32
,
1876
(
1999
).
11.
S.
Hong
,
J.
Berndt
, and
J.
Winter
,
Plasma Sources Sci. Technol.
12
,
46
(
2003
).
12.
M.
Hundt
,
P.
Sadler
,
I.
Levchenko
,
M.
Wolter
,
H.
Kersten
, and
K. K.
Ostrikov
,
J. Appl. Phys.
109
,
123305
(
2011
).
13.
D.
Samsonov
and
J.
Goree
,
J. Vac. Sci. Technol. A
17
,
2835
(
1999
).
14.
M.
Cavarroc
,
M.
Mikikian
,
Y.
Tessier
, and
L.
Boufendi
,
Phys. Rev. Lett.
100
,
045001
(
2008
).
15.
A. A.
Howling
,
C.
Hollenstein
, and
P.
Paris
,
Appl. Phys. Lett.
59
,
1409
(
1991
).
16.
P. R.
i Cabarrocas
,
P.
Gay
, and
A.
Hadjadj
,
J. Vac. Sci. Technol. A
14
,
655
(
1996
).
17.
F.
Greiner
,
J.
Carstensen
,
N.
Khler
,
I.
Pilch
,
H.
Ketelsen
,
S.
Knist
, and
A.
Piel
,
Plasma Sources Sci. Technol.
21
,
065005
(
2012
),.
18.
T.
Nitter
,
Plasma Sources Sci. Technol.
5
,
93
(
1996
).
19.
G. M.
Jellum
and
D. B.
Graves
,
J. Appl. Phys.
67
,
6490
(
1990
).
20.
C.
Arnas
,
A.
Mouberi
,
K.
Hassouni
,
A.
Michau
,
G.
Lombardi
,
X.
Bonnin
,
F.
Bénédic
, and
B.
Pégourié
,
J. Nucl. Mater.
390–391
,
140
(
2009
).
21.
C.
Arnas
,
A.
Michau
,
G.
Lombardi
,
L.
Couëdel
, and
Kishor
Kumar K.
,
Phys. Plasmas
20
,
013705
(
2013
).
22.
Kishor
Kumar K.
,
L.
Couëdel
, and
C.
Arnas
,
Phys. Plasmas
20
,
043707
(
2013
).
23.
Kishor
Kumar K.
,
L.
Couëdel
, and
C.
Arnas
,
J. Plasma Phys.
80
,
849
(
2014
).
24.
M.
Mikikian
,
M.
Cavarroc
,
L.
Couëdel
, and
L.
Boufendi
,
Phys. Plasmas
13
,
092103
(
2006
).
25.
J. H.
Chu
,
J.-B.
Du
, and
I.
Lin
,
J. Phys. D: Appl. Phys.
27
,
296
(
1994
).
26.
C.
Arnas
and
A. A.
Mouberi
,
J. Appl. Phys.
105
,
063301
(
2009
).
27.
Z.
Li
and
H.
Wang
,
Phys. Rev. E
70
,
021205
(
2004
).
28.
L.
Waldmann
,
Z. Naturforsch.
14a
,
589
(
1959
).
29.
H.
Rothermel
,
T.
Hagl
,
G. E.
Morfill
,
M. H.
Thoma
, and
H.
Thomas
,
Phys. Rev. Lett.
89
,
175001
(
2002
).
30.

The thermophoretic force expression used by Rothermel et al.29 is almost the same as the original expression derived by Waldmann,28 the difference being in the multiplicative coefficient, and gives the same result within experimental errorbars (∼30%).

31.
M. A.
Gallis
,
D. J.
Rader
, and
J. R.
Torczynski
,
Aerosol Sci. Technol.
36
,
1099
(
2002
).
32.
S.
Mitic
,
R.
Sütterlin
,
A. V. I. H.
Höfner
,
M. H.
Thoma
,
S.
Zhdanov
, and
G. E.
Morfill
,
Phys. Rev. Lett.
101
,
235001
(
2008
).
33.
M.
Schwabe
,
M.
Rubin-Zuzic
,
S.
Zhdanov
,
A. V.
Ivlev
,
H. M.
Thomas
, and
G. E.
Morfill
,
Phys. Rev. Lett.
102
,
255005
(
2009
).
34.
M.
Schwabe
,
L.-J.
Hou
,
S.
Zhdanov
,
A. V.
Ivlev
,
H. M.
Thomas
, and
G. E.
Morfill
,
New J. Phys.
13
,
083034
(
2011
).
35.
V. I.
Kolobov
and
L. D.
Tsendin
,
Phys. Rev. A
46
,
7837
(
1992
).
36.
A.
Michau
,
G.
Lombardi
,
L.
Colina Delacqua
,
M.
Redolfi
,
C.
Arnas
,
P.
Jestin
,
X.
Bonnin
, and
K.
Hassouni
,
Plasma Chem. Plasma Process.
32
,
451
(
2012
).
37.
L. D.
Tsendin
,
Plasma Sources Sci. Technol.
20
,
055011
(
2011
).
38.
Z.
Donkó
,
P.
Hartmann
, and
K.
Kutasi
,
Plasma Sources Sci. Technol.
15
,
178
(
2006
).
39.
J. D.
Cobine
,
Gaseous Conductors: Theory and Engineering Applications
(
Dover Publications
,
New York
,
1958
).
40.
G. M.
Jellum
and
D. B.
Graves
,
Appl. Phys. Lett.
57
,
2077
(
1990
).
41.
A.
Zeinert
,
C.
Arnas
,
C.
Dominique
, and
A.
Mouberi
,
J. Vac. Sci. Technol. A
26
,
1450
(
2008
).
43.
C.
Cui
and
J.
Goree
,
IEEE Trans. Plasma Sci.
22
,
151
(
1994
).
44.
T.
Matsoukas
and
M.
Russell
,
Phys. Rev. E
55
,
991
(
1997
).
45.
M. S.
Barnes
,
J. H.
Keller
,
J. C.
Forster
,
J. A.
O'Neill
, and
D. K.
Coultas
,
Phys. Rev. Lett.
68
,
313
(
1992
).
46.
P. K.
Shukla
and
A. A.
Mamun
,
Introduction to Dusty Plasma
(
IOP Publishing
,
Bristol
,
2002
).
You do not currently have access to this content.