The quarter wave resonator immersed in a strongly magnetized plasma displays two possible resonances occurring either below or above its resonance frequency in vacuum, fo. This fact was demonstrated in our recent articles [G. S. Gogna and S. K. Karkari, Appl. Phys. Lett. 96, 151503 (2010); S. K. Karkari, G. S. Gogna, D. Boilson, M. M. Turner, and A. Simonin, Contrib. Plasma Phys. 50(9), 903 (2010)], where the experiments were carried out over a limited range of magnetic fields at a constant electron density, ne. In this paper, we present the observation of dual resonances occurring over the frequency scan and find that ne calculated by considering the lower resonance frequency is 25%–30% smaller than that calculated using the upper resonance frequency with respect to fo. At a given magnetic field strength, the resonances tend to shift away from fo as the background density is increased. The lower resonance tends to saturate when its value approaches electron cyclotron frequency, fce. Interpretation of these resonance conditions are revisited by examining the behavior of the resonance frequency response as a function of ne. A qualitative discussion is presented which highlights the practical application of the hairpin resonator for interpreting ne in a strongly magnetized plasma.

1.
X. J.
Xing
,
Q.
Zhao
, and
L.
Zheng
,
Prog. Electromagn. Res.
30
,
129
139
(
2013
).
2.
M. A.
Heald
and
C. B.
Wharton
,
Plasma Diagnostics with Microwaves
(
Krieger
,
New York
,
1978
), pp.
71
94
.
3.
V. L.
Ginzburg
,
The Propagation of Electromagnetic Waves in Plasmas
(
Pergamon
,
Oxford
,
1970
).
4.
I. H.
Hutchinson
,
Principles of Plasma Diagnostics
(
University Press
,
Cambridge
,
2002
).
5.
F. W.
Crawford
,
G. S.
Kino
, and
A. B.
Cannara
,
J. Appl. Phys.
34
,
3168
(
1963
).
6.
P. J.
Barrett
and
H. J.
Jones
,
Plasma Phys.
10
,
911
(
1968
).
7.
T. H.
Stix
,
Phys. Fluids B
2
,
1729
(
1990
).
8.
F.
Jin
,
H.
Tong
,
Z.
Shi
,
D.
Tang
, and
P. K.
Chu
,
Comput. Phys. Commun.
175
,
545
552
(
2006
).
9.
R. L.
Stenzel
,
Rev. Sci. Instrum.
47
,
603
607
(
1976
).
10.
S. K.
Karkari
and
A. R.
Ellingboe
,
Appl. Phys. Lett.
88
,
101501
(
2006
).
11.
B. L.
Sands
,
N. S.
Siefert
, and
B. N.
Ganguly
,
Plasma Sources Sci. Technol.
16
,
716
(
2007
).
12.
G. A.
Curley
,
L.
Gatilova
,
S.
Guilet
,
S.
Bouchoule
,
G. S.
Gogna
,
N.
Sirse
,
S. K.
Karkari
, and
J. P.
Booth
,
J. Vac. Sci. Technol. A
28
,
360
(
2010
).
13.
G. S.
Gogna
and
S. K.
Karkari
,
Appl. Phys. Lett.
96
,
151503
(
2010
).
14.
S. K.
Karkari
,
G. S.
Gogna
,
D.
Boilson
,
M. M.
Turner
, and
A.
Simonin
,
Contrib. Plasma Phys.
50
(
9
),
903
(
2010
).
15.
J. Z.
Xu
,
J. J.
Shi
,
J.
Zhang
,
Q.
Zhang
,
N.
Keji
, and
H.
Sugai
,
Chin. Phys. B
19
,
075206
(
2010
).
16.
Y. Z.
Liang
,
K.
Kato
,
K.
Nakamura
, and
H.
Sugai
,
Jpn. J. Appl. Phys., Part 1
50
,
116101
(
2011
).
17.
V.
Samara
,
M. D.
Bowden
, and
N.
St.
J.
Braithwaite
,
Plasma Sources Sci. Technol.
21
,
024011
(
2012
).
18.
G. S.
Gogna
,
C.
Gaman
,
S. K.
Karkari
, and
M. M.
Turner
,
Appl. Phys. Lett.
101
,
042105
(
2012
).
19.
G. S.
Gogna
and
S. K.
Karkari
,
Appl. Phys. Express
7
,
096101
(
2014
).
20.
R. B.
Piejak
,
V. A.
Godyak
,
R.
Garner
,
B. M.
Alexandrovich
, and
N.
Sternberg
,
J. Appl. Phys.
95
,
3785
(
2004
).
21.
K.
Takayama
,
H.
Ikegami
, and
S.
Miyazaki
,
Phys. Rev. Lett.
5
(
6
),
238
(
1960
).
22.
D. H.
Looney
and
S. C.
Brown
,
Phys. Rev. Lett.
93
,
965
(
1954
).
23.
T.
Shirakawa
and
H.
Sugai
,
Jpn. J. Appl. Phys., Part 1
32
,
5129
(
1993
).
24.
A.
Schwabedissen
,
E. C.
Benck
, and
J. R.
Roberts
,
Plasma Sources Sci. Technol.
7
,
119
(
1998
).
25.
H.
Kokura
,
K.
Nakamura
,
I. P.
Ghanashev
, and
H.
Sugai
,
Jpn. J. Appl. Phys., Part 1
38
,
5262
(
1999
).
26.
S.
Dine
,
J. P.
Booth
,
G. A.
Curley
,
C. S.
Corr
,
J.
Jolly
, and
J.
Guillon
,
Plasma Sources Sci. Technol.
14
,
777
(
2005
).
27.
B. K.
Na
,
K. H.
You
, and
H. Y.
Chang
,
Jpn. J. Appl. Phys., Part 1
50
,
08JB01
(
2011
).
28.
M.
Lapke
,
J.
Oberrath
,
C.
Schulz
,
R.
Storch
,
T.
Styrnoll
,
C.
Zietz
,
P.
Awakowicz
,
R. P.
Brinkmann
,
T.
Musch
,
T.
Mussenbrock
, and
I.
Rolfes
,
Plasma Sources Sci. Technol.
20
,
042001
(
2011
).
29.
D. R.
Boris
,
R. F.
Fernsler
, and
S. G.
Walton
,
Plasma Sources Sci. Technol.
20
,
025003
(
2011
).
30.
I.
Liang
,
K.
Nakamura
, and
H.
Sugai
,
Appl. Phys. Express
4
,
066101
(
2011
).
31.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Material Processing
(
Wiley
,
New York
,
2005
), p.
97
.
32.
M.
Laroussi
and
J.
Reece Roth
,
IEEE Trans. Plasma Sci.
21
,
366
372
(
1993
).
33.
G. T.
Ruch
,
D. E.
Barrick
, and
C. K.
Krichbaum
,
Radar Cross Section Handbook
(
Plenum
,
New York
,
1970
), pp.
473
492
.
34.
J. A.
Kong
,
Electromagnetic Wave Theory
(
Wiley
,
New York
,
1986
), pp.
110
132
.
35.
B. J.
Hu
,
G.
Wei
, and
S. L.
Lai
,
IEEE Trans. Plasma Sci.
27
,
1131
(
1999
).
36.
J. R.
Roth
, “
Microwave absorption system
,” U.S. patent 4,989,006 (29 January
1991
).
37.
M.
Laroussi
, “
A tunable microwave notch absorber filter
,”
Int. J. Infrared Millim. Waves
13
,
1557
1569
(
1992
).
38.
I.
Dey
and
S.
Bhattacharjee
,
Phys. Plasmas
15
,
123502
(
2008
).
39.
D.
Gahan
,
B.
Dolinaj
, and
M. B.
Hopkins
,
Plasma Sources Sci. Technol.
17
,
035026
(
2008
).
You do not currently have access to this content.