We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (“slingshot effect”). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

1.
T.
Tajima
and
J. M.
Dawson
,
Phys. Rev. Lett.
43
,
267
(
1979
).
2.
L. M.
Gorbunov
and
V. I.
Kirsanov
,
Sov. Phys. JETP
66
,
290
(
1987
).
3.
P.
Sprangle
,
E.
Esarey
,
A.
Ting
, and
G.
Joyce
,
Appl. Phys. Lett.
53
,
2146
(
1988
).
4.
A.
Irman
,
M. J. H.
Luttikhof
,
A. G.
Khachatryan
,
F. A.
van Goor
,
J. W. J.
Verschuur
,
H. M. J.
Bastiaens
, and
K.-J.
Boller
,
J. Appl. Phys.
102
,
024513
(
2007
).
6.
J.
Faure
,
Y.
Glinec
,
A.
Pukhov
,
S.
Kiselev
,
S.
Gordienko
,
E.
Lefebvre
,
J.-P.
Rousseau
,
F.
Burgy
, and
V.
Malka
,
Nature
431
,
541
544
(
2004
).
7.
S.
Kalmykov
,
S. A.
Yi
,
V.
Khudik
, and
G.
Shvets
,
Phys. Rev. Lett.
103
,
135004
(
2009
).
8.
X.
Wang
 et al.,
Nat. Commun.
4
,
1988
(
2013
).
9.
G.
Fiore
,
J. Phys. A: Math. Theor.
47
,
225501
(
2014
).
10.
G.
Fiore
,
Acta Appl. Math.
132
,
261
271
(
2014
).
11.
L. A.
Gizzi
 et al.,
Appl. Sci.
3
,
559
580
(
2013
).
12.
L.
Pribyl
,
L.
Juha
,
G.
Korn
 et al., in
Proceedings of the IBIC2012, Tsukuba, Japan
(
2012
), p.
482485
.
13.
V. I.
Eremin
,
A. V.
Korzhimanov
, and
A. V.
Kim
,
Phys. Plasmas
17
,
043102
(
2010
).
14.
J. P.
Geindre
,
R. S.
Marjoribanks
, and
P.
Audebert
,
Phys. Rev. Lett.
104
,
135001
(
2010
).
15.
A. A.
Gonoskov
,
A. V.
Korzhimanov
,
A. V.
Kim
,
M.
Marklund
, and
A. M.
Sergeev
,
Phys. Rev. E
84
,
046403
(
2011
).
16.
τ=τ1+τ2, with τ1,τ2 the time lapses spent during the oscillation respectively in the domain of the elastic and of the constant force; due to the size of the domains it is τ1THnr/2. Hence, τ depends on Z and on the oscillation amplitude, but is at the least of the order of THnr.
17.
The longitudinal equation of motion of the Z=0 electrons is dpz̃dt=m[Fpz(ctze)ωp2ze],Fpz(ξ)(eλ)2ηξϵs2(ξ)8(mπ)2c3γ(ξ), where η=1,1/2, respectively, for circular, linear polarization, and ωp2=4πe2n0/m is the square of the plasma frequency. In the nonrelativistic regime we find γ̃1,ze(t)ct, p̃zmże, hence the maximum of ϵs2(ξ) and the end of the pulse reach these electrons respectively at tt¯=ξ0/c, tl/c, and the equation of motion in the bulk reduces to that of a forced harmonic oscillator: z̈e=Fpz(ct)ωp2ze; the solution with initial conditions ze(0)=że(0)=0 is ze(t)=0tdtFpz(ct)sin[ωp(tt)]/ωp. Electrons initially located at small Z>0 will experience approximately the same longitudinal displacement with a time delay Z/c. F̃pzṽz=Fpzże keeps nonnegative if during the pulse że(t)=0tdtFpz(ct)cos[ωp(tt)] switches from positive to negative at t=t¯=ξ0/c (only). In particular, it must be ze(t)0 for all tl/c, and ξ0,n0,l must fulfill π/4<ξ0ωp/c<3π/4. If the pulse is so intense to make electrons relativistic the conditions for maximal slingshot loading are more complicated; for an estimate in the proposed experimental conditions see the comments after (A7).
18.
In (6), we have chosen the additive constant so that the minima of U w.r.t. ze are equal to zero for all Z.
19.
To perform the work integral, we have used the relation z2+R2=12z[ zz2+R2+R2sinh1zR ]. We have chosen the additive constant equal to the last three terms, so that UR(0,Z)=U(0+,Z).
20.
D.
Jovanović
,
R.
Fedele
,
F.
Tanjia
,
S. De
Nicola
, and
L. A.
Gizzi
,
Eur. Phys. J. D
66
,
328
(
2012
).
21.
A.
Pukhov
,
Rep. Prog. Phys.
65
,
R1
R55
(
2002
).
22.
W.
Lu
,
M.
Tzoufras
,
C.
Joshi
,
F. S.
Tsung
,
J.
Vieira
,
R. A.
Fonseca
, and
L. O.
Silva
,
Phys. Rev. Spec. Top. Accel. Beams
10
,
061301
(
2007
).
23.
As TH/ζ|ζ=0=0, only in the nonrelativistic limit THζ0THnr=π/cK=πm/e2n0 is independent of ζ (nonrelativistic harmonic oscillator).
24.
In fact, (B3) implies t<(z+|xx|)/c for all xCR; z/c is the time when the R= pulse reaches x,|xx|/c is the time lapse necessary for a EM signal to travel from x to x, hence their sum is the time when the information that the charge distribution does not extend indefinitely in the xy plane, but is confined in CR, arrives at x.
25.
In fact, by the assumptions we find 2ctz2zz, (ctz)2=(ct)22ctz+z2R2+z22zz+z2=R2+(zz)2 and, taking the square root, ctrz.
26.
In fact, eẼρ decreases as Z grows and when the electrons penetrate inside CR, as correspondingly the negative contribution due to the electrons displaced beyond S0(t) grows, while the positive one by the ions decreases.
You do not currently have access to this content.