Kinetic Alfvén waves represent an important subject in space plasma physics, since they are thought to play a crucial role in the development of the turbulent energy cascade in the solar wind plasma at short wavelengths (of the order of the proton gyro radius ρp and/or inertial length dp and beyond). A full understanding of the physical mechanisms which govern the kinetic plasma dynamics at these scales can provide important clues on the problem of the turbulent dissipation and heating in collisionless systems. In this paper, hybrid Vlasov-Maxwell simulations are employed to analyze in detail the features of the kinetic Alfvén waves at proton kinetic scales, in typical conditions of the solar wind environment (proton plasma beta βp = 1). In particular, linear and nonlinear regimes of propagation of these fluctuations have been investigated in a single-wave situation, focusing on the physical processes of collisionless Landau damping and wave-particle resonant interaction. Interestingly, since for wavelengths close to dp and βp ≃ 1 (for which ρpdp) the kinetic Alfvén waves have small phase speed compared to the proton thermal velocity, wave-particle interaction processes produce significant deformations in the core of the particle velocity distribution, appearing as phase space vortices and resulting in flat-top velocity profiles. Moreover, as the Eulerian hybrid Vlasov-Maxwell algorithm allows for a clean almost noise-free description of the velocity space, three-dimensional plots of the proton velocity distribution help to emphasize how the plasma departs from the Maxwellian configuration of thermodynamic equilibrium due to nonlinear kinetic effects.

1.
E.
Marsch
,
Living Rev. Solar Phys.
3
,
1
(
2006
);
R.
Bruno
and
V.
Carbone
,
Living Rev. Solar Phys.
2
,
4
(
2005
).
2.
A. N.
Kolmogorov
,
Dokl. Akad. Nauk SSSR
30
,
299
(
1941
).
3.
P. J.
Coleman
,
Astrophys. J.
153
,
371
(
1968
).
4.
M.
Dobrowolny
,
A.
Magneney
, and
P.
Veltri
,
Phys. Rev. Lett.
45
,
144
(
1980
).
5.
C. Y.
Tu
and
E.
Marsch
,
Space Sci. Rev.
73
,
1
(
1995
).
6.
M.
Goldstein
,
D. A.
Roberts
, and
W. H.
Matthaeus
,
Annu. Rev. Astron. Astrophys.
33
,
283
(
1995
).
7.
R. J.
Leamon
,
W. H.
Matthaeus
, and
C. W.
Smith
,
Astrophys. J.
537
,
1054
(
2000
).
8.
S.
Bourouaine
,
S.
Alexandrova
,
E.
Marsch
, and
M.
Maksimovic
,
Astrophys. J.
749
,
102
(
2012
).
9.
S. D.
Bale
,
P. J.
Kellog
,
F. S.
Mozer
,
T. S.
Horbury
, and
H.
Reme
,
Phys. Rev. Lett.
94
,
215002
(
2005
).
10.
F.
Sahraoui
,
M. L.
Goldstein
,
P.
Robert
, and
Yu. V.
Khotyaintsev
,
Phys. Rev. Lett.
102
,
231102
(
2009
).
11.
J. J.
Podesta
and
J. M.
Tenbarge
,
J. Geophys. Res.
117
,
A10106
, doi: (
2012
).
12.
C. S.
Salem
,
G. G.
Howes
,
D.
Sundkvist
,
S. D.
Bale1
,
C. C.
Chaston
,
C. H. K.
Chen
, and
F. S.
Mozer
,
Astrophys. J. Lett.
745
,
L9
(
2012
).
13.
C. H. K.
Chen
,
S.
Boldyrev
,
Q.
Xia
, and
J. C.
Perez
,
Phys. Rev. Lett.
110
,
225002
(
2013
).
14.
K. H.
Kiyani
,
S. C.
Chapman
,
F.
Sahraoui
,
B.
Hnat
,
O.
Fauvarque
, and
Yu. V.
Khotyaintsev
,
Astrophys. J.
763
,
10
(
2013
).
15.
G. G.
Howes
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
E.
Quataert
, and
A. A.
Schekochihin
,
J. Geophys. Res.
113
,
A05103
, doi: (
2008
).
16.
A. A.
Schekochihin
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
G. G.
Howes
,
E.
Quataert
, and
T.
Tatsuno
,
Astrophys. J.
182
,
310
(
2009
).
17.
F.
Sahraoui
,
G.
Belmont
, and
M. L.
Goldstein
,
Astrophys. J.
748
,
100
(
2012
).
18.
S. P.
Gary
and
K.
Nishimura
,
J. Geophys. Res.
109
,
A02109
, doi: (
2004
).
19.
G. G.
Howes
,
W.
Dorland
,
S. C.
Cowley
,
G. W.
Hammett
,
E.
Quataert
,
A. A.
Schekochihin
, and
T.
Tatsuno
,
Phys. Rev. Lett.
100
,
065004
(
2008
).
20.
J. M.
TenBarge
and
G. G.
Howes
,
Phys. Plasmas
19
,
055901
(
2012
).
21.
J. V.
Hollweg
,
J. Geophys. Res.
104
(
A7
),
14811
, doi: (
1999
).
22.
W. H.
Matthaeus
,
M. L.
Goldstein
, and
J. H.
King
,
J. Geophys. Res.
91
,
59
, doi: (
1986
).
23.
W. H.
Matthaeus
,
M. L.
Goldstein
, and
D. A.
Roberts
,
J. Geophys. Res.
95
,
20673
, doi: (
1990
).
24.
F.
Valentini
,
P.
Travnicek
,
F.
Califano
,
P.
Hellinger
, and
A.
Mangeney
,
J. Comput. Phys.
225
,
753
(
2007
).
25.
F.
Valentini
,
P.
Veltri
, and
A.
Mangeney
,
J. Comput. Phys.
210
,
730
(
2005
).
26.
F.
Valentini
,
F.
Califano
, and
P.
Veltri
,
Phys. Rev. Lett.
104
,
205002
(
2010
).
27.
S.
Servidio
,
F.
Valentini
,
F.
Califano
, and
P.
Veltri
,
Phys. Rev. Lett.
108
,
045001
(
2012
).
28.
S.
Servidio
,
K. T.
Osman
,
F.
Valentini
,
D.
Perrone
,
F.
Califano
,
S.
Chapman
,
W. H.
Matthaeus
, and
P.
Veltri
,
Astrophys. J. Lett.
781
,
L27
(
2014
).
29.
W. H.
Matthaeus
,
S.
Oughton
,
K. T.
Osman
,
S.
Servidio
,
M.
Wan
,
S. P.
Gary
,
M. A.
Shay
,
F.
Valentini
,
V.
Roytershteyn
,
H.
Karimabadi
, and
S. C.
Chapman
,
Astrophys. J.
790
,
155
(
2014
).
30.
F.
Valentini
,
A.
Vecchio
,
S.
Donato
,
V.
Carbone
,
C.
Briand
,
J.
Bougeret
, and
P.
Veltri
,
Astrophys. J. Lett.
788
,
L16
(
2014
).
31.
A.
Greco
,
F.
Valentini
,
S.
Servidio
, and
W. H.
Matthaeus
,
Phys. Rev. E
86
,
066405
(
2012
).
32.
D.
Perrone
,
F.
Valentini
,
S.
Servidio
,
S.
Dalena
, and
P.
Veltri
,
Astrophys. J.
762
,
99
(
2013
).
33.
F.
Valentini
,
A.
Iazzolino
, and
P.
Veltri
,
Phys. Plasmas
17
,
052104
(
2010
).
34.
G.
Birkhoff
and
S. Mac
Lane
,
A Survey of Modern Algebra
, 4th ed. (
Macmillan Publishing Co., Inc
,
New York, NY
,
1977
), pp.
118
120
.
35.
C. Z.
Cheng
and
G.
Knorr
,
J. Comput. Phys.
22
,
330
351
(
1976
).
36.
A. P.
Matthews
,
J. Comput. Phys.
112
,
102
116
(
1994
).
37.
R.
Peyret
and
T. D.
Taylor
,
Computational Methods for Fluid Flow
(
Springer
,
New York
,
1983
).
38.
N. A.
Krall
and
A. W.
Trivelpiece
,
Principles of Plasma Physics
(
San Francisco Press
,
San Francisco, CA
,
1986
).
39.
L. D.
Landau
,
J. Phys. U.S.S.R.
10
,
25
(
1946
).
40.
T. H.
Stix
,
Waves in Plasmas
(
American Institute of Physics
,
New York
,
1992
).
41.
T.
O'Neil
,
Phys. Fluids
8
,
2255
(
1965
).
42.
G.
Manfredi
,
Phys. Rev. Lett.
79
,
2815
(
1997
).
43.
M.
Brunetti
,
F.
Califano
, and
F.
Pegoraro
,
Phys. Rev. E
62
,
4109
(
2000
).
44.
F.
Valentini
,
V.
Carbone
,
P.
Veltri
, and
A.
Magneney
,
Phys. Rev. E
71
,
017402
(
2005
).
45.
L.
Rudakov
,
M.
Mithaiwala
,
G.
Ganguli
, and
C.
Crabtree
,
Phys. Plasmas
18
,
012307
(
2011
).
46.
L.
Rudakov
,
C.
Crabtree
,
G.
Ganguli
, and
M.
Mithaiwala
,
Phys. Plasmas
19
,
042704
(
2012
).
47.
L. D.
Landau
, “
The transport equation in the case of the coulomb interaction
,”
Collected papers of L. D. Landau
(
Pergamon Press
,
1965
), pp.
163
170
.
48.
O.
Pezzi
,
F.
Valentini
,
D.
Perrone
, and
P.
Veltri
,
Phys. Plasmas
20
,
092111
(
2013
).
49.
O.
Pezzi
,
F.
Valentini
, and
P.
Veltri
, “
Collisional relaxation: Landau versus Dougherty operator
,”
J. Plasma Phys.
(published online).
You do not currently have access to this content.