We perform direct numerical simulations of quasi-static magnetohydrodynamic turbulence and compute various energy transfers including the ring-to-ring and conical energy transfers, and the energy fluxes of the perpendicular and parallel components of the velocity field. We show that the rings with higher polar angles transfer energy to ones with lower polar angles. For large interaction parameters, the dominant energy transfer takes place near the equator (polar angle θπ2). The energy transfers are local both in wavenumbers and angles. The energy flux of the perpendicular component is predominantly from higher to lower wavenumbers (inverse cascade of energy), while that of the parallel component is from lower to higher wavenumbers (forward cascade of energy). Our results are consistent with earlier results, which indicate quasi two-dimensionalization of quasi-static magnetohydrodynamic flows at high interaction parameters.

1.
P. H.
Roberts
,
An Introduction to Magnetohydrodynamics
(
Elsevier
,
New York
,
1967
).
2.
B.
Knaepen
and
R.
Moreau
,
Ann. Rev. Fluid Mech.
40
,
25
(
2008
).
3.
A.
Alemany
,
R.
Moreau
,
P. L.
Sulem
, and
U.
Frisch
,
J. Mech.
18
,
277
(
1979
).
4.
Y.
Kolesnikov
and
A.
Tsinober
,
Fluid Dyn.
9
,
621
(
1976
).
5.
6.
O.
Zikanov
and
A.
Thess
,
J. Fluid Mech.
358
,
299
(
1998
).
7.
B.
Favier
,
F. S.
Godeferd
,
C.
Cambon
, and
A.
Delache
,
Phys. Fluids
22
,
075104
(
2010
).
8.
H. K.
Moffatt
,
J. Fluid Mech.
28
,
571
(
1967
).
9.
L. G.
Kit
and
A. B.
Tsinober
,
Magnitnaya Gidrodinamika
3
,
27
(
1971
).
10.
R.
Moreau
,
Magnetohydrodynamics
(
Kluwer Academic Publishers
,
Dordrecht
,
1990
).
11.
J.
Sommeria
and
R.
Moreau
,
J. Fluid Mech.
118
,
507
(
1982
).
12.
R.
Klein
and
A.
Pothérat
,
Phys. Rev. Lett.
104
,
034502
(
2010
).
13.
A.
Pothérat
and
R.
Klein
, “Why, how and when electrically driven flows and MHD turbulence become three-dimensional,”
J. Fluid Mech.
(in press); e-print arXiv:1305.7105.
14.
A.
Pothérat
,
Magnetohydrodynamics
48
,
13
(
2012
).
15.
P.
Burattini
,
M.
Kinet
,
D.
Carati
, and
B.
Knaepen
,
Physica D
237
,
2062
(
2008
).
16.
P.
Burattini
,
M.
Kinet
,
D.
Carati
, and
B.
Knaepen
,
Phys. Fluids
20
,
065110
(
2008
).
17.
B.
Favier
,
F. S.
Godeferd
,
C.
Cambon
,
A.
Delache
, and
W. J. T.
Bos
,
J. Fluid Mech.
681
,
434
(
2011
).
18.
K. S.
Reddy
and
M. K.
Verma
,
Phys. Fluids
26
,
025109
(
2014
).
19.
H.
Branover
,
A.
Eidelmann
,
M.
Nagorny
, and
M.
Kireev
,
Prog. Turb. Res.
162
,
64
(
1994
).
20.
S.
Eckert
,
G.
Gerbeth
,
W.
Witke
, and
H.
Langenbrunner
,
Int. J. Heat Fluid Flow
22
,
358
(
2001
).
21.
V.
Dymkou
and
A.
Pothérat
,
Theor. Comput. Fluid Dyn.
23
,
535
(
2009
).
22.
K.
Kornet
and
A.
Pothérat
, e-print arXiv:1403.4129.
23.
T.
Boeck
,
D.
Krasnov
,
A.
Thess
, and
O.
Zikanov
,
Phys. Rev. Lett.
101
,
244501
(
2008
).
24.
M.
Lesieur
,
Turbulence in Fluids
(
Kluwer Academic
,
Dordrecht
,
1990
).
25.
G.
Dar
,
M.
Verma
, and
V.
Eswaran
,
Physica D
157
,
207
(
2001
).
27.
B.
Teaca
,
M. K.
Verma
,
B.
Knaepen
, and
D.
Carati
,
Phys. Rev. E
79
,
046312
(
2009
).
28.
B.
Knaepen
,
S.
Kassinos
, and
D.
Carati
,
J. Fluid Mech.
513
,
199
(
2004
).
29.
A.
Vorobev
,
O.
Zikanov
,
P. A.
Davidson
, and
B.
Knaepen
,
Phys. Fluids
17
,
125105
(
2005
).
30.
M. K.
Verma
,
A.
Chatterjee
,
K. S.
Reddy
,
R. K.
Yadav
,
S.
Paul
,
M.
Chandra
, and
R.
Samtaney
,
Pramana
81
,
617
(
2013
).
31.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zhang
,
Spectral Methods in Fluid Turbulence
(
Springer-Verlag
,
Berlin
,
1998
).
32.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
(
Dover Publishers
,
New York
,
2001
).
33.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
34.
D.
Carati
,
S.
Ghosal
, and
P.
Moin
,
Phys. Fluids
7
,
606
(
1995
).
35.
J.
Jiménez
,
A. A.
Wray
,
P. G.
Saffman
, and
R. S.
Rogallo
,
J. Fluid Mech.
255
,
65
(
1993
).
36.
P.
Caperan
and
A.
Alemany
,
J. Mech. Theor. Appl.
4
,
175
(
1985
).
37.
A.
Pothérat
and
V.
Dymkou
,
J. Fluid Mech.
655
,
174
(
2010
).
You do not currently have access to this content.