Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N2, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

1.
A.
Neuber
,
J.
Krile
,
G.
Edmiston
, and
H.
Krompholz
,
Phys. Plasmas
14
,
057102
(
2007
).
2.
J.
Foster
,
H.
Krompholz
, and
A.
Neuber
,
Phys. Plasmas
18
,
013502
(
2011
).
3.
J.
Krile
,
A.
Neuber
,
H.
Krompholz
, and
T.
Gibson
,
Appl. Phys. Lett.
89
,
201501
(
2006
).
4.
C.
Chang
,
G.
Liu
,
C.
Tang
,
C.
Chen
, and
J.
Fang
,
Phys. Plasmas
18
,
055702
(
2011
).
5.
J.
Foster
,
G.
Edmiston
,
M.
Thomas
, and
A.
Neuber
,
Rev. Sci. Instrum.
79
,
114701
(
2008
).
6.
S.
Beeson
and
A.
Neuber
,
Rev. Sci. Instrum.
83
,
034702
(
2012
).
7.
S.
Beeson
and
A.
Neuber
, in IEEE Int'l. Power Mod. High Volt. Conf., San Diego, CA,
2012
.
8.
See http://www.lxcat.laplace.univ-tlse.fr for PHELPS database, retrieved January
2013
.
9.
G.
Edmiston
,
J.
Krile
,
A.
Neuber
,
J.
Dickens
, and
H.
Krompholz
,
IEEE Trans. Plasma Sci.
34
(
5
),
1782
1788
(
2006
).
10.
S. J.
Orfandis
, Electromagnetic Waves and Antennas (
2010
), Chap. 5.
11.
M.
Thiyagarajan
and
J.
Scharer
,
J. Appl. Phys.
104
,
013303
(
2008
).
12.
P.
Ford
,
S.
Beeson
,
H.
Krompholz
, and
A.
Neuber
,
Phys. Plasmas
19
,
073503
(
2012
).
13.
I. A.
Kossyi
,
A. Y.
Kostinksky
,
A. A.
Matveyev
, and
V. P.
Silakov
,
Plasma Sources Sci. Technol.
1
(
3
),
207
220
(
1992
).
14.
L. G.
Christophorou
and
L. A.
Pinnaduwage
,
IEEE Trans. Electron. Insul.
25
(
1
),
55
74
(
1990
).
15.
F. J.
Mehr
and
M. A.
Biondi
,
Phys. Rev.
181
(
1
),
264
271
(
1969
).
16.
R.
Deloche
,
P.
Monchicourt
,
M.
Cheret
, and
F.
Lambert
,
Phys. Rev. A
13
(
3
),
1140
1176
(
1976
).
17.
D. R.
Bates
,
J. Phys. B
17
,
2363
2372
(
1984
).
18.
E.
Hinnov
and
J.
Hirschberg
,
Phys. Rev.
125
(
3
),
795
801
(
1962
).
19.
D. R.
Bates
and
A.
Dalgarno
,
Atomic and Molecular Processes
, edited by
D. R.
Bates
(
Academic Press, Inc.
,
New York
,
1962
), p.
1
.
20.
A.
Bultel
,
B.
Ootegem
,
A.
Bourdon
, and
P.
Vervisch
,
Phys. Rev. E
65
,
046406
(
2002
).
21.
S. I.
Gritsinin
,
I. A.
Kossyi
,
V. P.
Silakov
, and
N. M.
Tarasova
,
J. Phys. D: Appl. Phys.
29
,
1032
1034
(
1996
).
You do not currently have access to this content.