We present a method for studying the evolution of plasma turbulence by tracking dispersion relations in the energy spectrum in the wavenumber-frequency domain. We apply hybrid plasma simulations in a simplified two-dimensional geometry to demonstrate our method and its applicability to plasma turbulence in the ion kinetic regime. We identify four dispersion relations: ion-Bernstein waves, oblique whistler waves, oblique Alfvén/ion-cyclotron waves, and a zero-frequency mode. The energy partition and frequency broadening are evaluated for these modes. The method allows us to determine the evolution of decaying plasma turbulence in our restricted geometry and shows that it cascades along the dispersion relations during the early phase with an increasing broadening around the dispersion relations.

1.
G. G.
Howes
, “
Inertial range turbulence in kinetic plasmas
,”
Phys. Plasmas
15
,
055904
(
2008
);
G. G.
Howes
, e-print arXiv:0711.4358.
2.
A. A.
Schekochihin
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
G. G.
Howes
,
E.
Quataert
, and
T.
Tatsuno
, “
Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas
,”
Astrophys. J. Suppl.
182
,
310
377
(
2009
);
A. A.
Schekochihin
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
G. G.
Howes
,
E.
Quataert
, and
T.
Tatsuno
, e-print arXiv:0704.0044.
3.
H.
Karimabadi
,
V.
Roytershteyn
,
M.
Wan
,
W. H.
Matthaeus
,
W.
Daughton
,
P.
Wu
,
M.
Shay
,
B.
Loring
,
J.
Borovsky
,
E.
Leonardis
,
S. C.
Chapman
, and
T. K. M.
Nakamura
, “
Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas
,”
Phys. Plasmas
20
,
012303
(
2013
).
4.
P.
Wu
,
S.
Perri
,
K.
Osman
,
M.
Wan
,
W. H.
Matthaeus
,
M. A.
Shay
,
M. L.
Goldstein
,
H.
Karimabadi
, and
S.
Chapman
, “
Intermittent heating in solar wind and kinetic simulations
,”
Astrophys. J. Lett.
763
,
L30
(
2013
).
5.
P.
Goldreich
and
S.
Sridhar
, “
Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence
,”
Astrophys. J.
438
,
763
775
(
1995
).
6.
R. H.
Kraichnan
, “
Kolmogorov's hypotheses and eulerian turbulence theory
,”
Phys. Fluids
7
,
1723
1734
(
1964
).
7.
H.
Tennekes
, “
Eulerian and Lagrangian time microscales in isotropic turbulence
,”
J. Fluid Mech.
67
,
561
567
(
1975
).
8.
M.
Wilczek
and
Y.
Narita
, “
Wave-number-frequency spectrum for turbulence from a random sweeping hypothesis with mean flow
,”
Phys. Rev. E
86
,
066308
(
2012
).
9.
D.
Verscharen
,
E.
Marsch
,
U.
Motschmann
, and
J.
Müller
,
Phys. Plasmas
19
,
022305
(
2012
).
10.
J.
Müller
,
S.
Simon
,
U.
Motschmann
,
J.
Schüle
, and
K.-H.
Glassmeier
,
Comput. Phys. Commun.
182
,
946
966
(
2011
).
11.
H.
Kriegel
,
S.
Simon
,
U.
Motschmann
,
J.
Saur
,
F. M.
Neubauer
,
A. M.
Persoon
,
M. K.
Dougherty
, and
D. A.
Gurnett
, “
Influence of negatively charged plume grains on the structure of Enceladus' Alfvén wings: Hybrid simulations versus Cassini magnetometer data
,”
J. Geophys. Res.
116
,
A10223
, doi: (
2011
).
12.
S.
Wiehle
,
F.
Plaschke
,
U.
Motschmann
,
K.-H.
Glassmeier
,
H. U.
Auster
,
V.
Angelopoulos
,
J.
Mueller
,
H.
Kriegel
,
E.
Georgescu
,
J.
Halekas
,
D. G.
Sibeck
, and
J. P.
McFadden
, “
First lunar wake passage of ARTEMIS: Discrimination of wake effects and solar wind fluctuations by 3D hybrid simulations
,”
Planet. Space Sci.
59
,
661
671
(
2011
).
13.
J.
Müller
,
S.
Simon
,
Y.-C.
Wang
,
U.
Motschmann
,
D.
Heyner
,
J.
Schüle
,
W.-H.
Ip
,
G.
Kleindienst
, and
G. J.
Pringle
, “
Origin of Mercury's double magnetopause: 3D hybrid simulation study with A.I.K.E.F.
,”
Icarus
218
,
666
687
(
2012
).
14.
D.
Verscharen
,
E.
Marsch
,
U.
Motschmann
, and
J.
Müller
, “
Parametric decay of oblique Alfvén waves in two-dimensional hybrid simulations
,”
Phys. Rev. E
86
,
027401
(
2012
);
D.
Verscharen
,
E.
Marsch
,
U.
Motschmann
, and
J.
Müller
, e-print arXiv:1207.6144 [physics.space-ph].
15.
S. P.
Gary
, “
Test for wavevector anisotropies in plasma turbulence cascades
,”
Astrophys. J.
769
,
36
(
2013
).
16.
J. J.
Podesta
, “
The need to consider ion Bernstein waves as a dissipation channel of solar wind turbulence
,”
J. Geophys. Res.
117
,
A07101
, doi: (
2012
).
17.
S.
Boldyrev
,
J.
Mason
, and
F.
Cattaneo
, “
Dynamic alignment and exact scaling laws in magnetohydrodynamic turbulence
,”
Astrophys. J. Lett.
699
,
L39
L42
(
2009
).
18.
C. H. K.
Chen
,
A.
Mallet
,
A. A.
Schekochihin
,
T. S.
Horbury
,
R. T.
Wicks
, and
S. D.
Bale
, “
Three-dimensional structure of solar wind turbulence
,”
Astrophys. J.
758
,
120
(
2012
);
C. H. K.
Chen
,
A.
Mallet
,
A. A.
Schekochihin
,
T. S.
Horbury
,
R. T.
Wicks
, and
S. D.
Bale
, e-print arXiv:1109.2558 [physics.space-ph].
19.
J. M.
TenBarge
and
G. G.
Howes
, “
Evidence of critical balance in kinetic Alfvén wave turbulence simulations
,”
Phys. Plasmas
19
,
055901
(
2012
).
20.
J. M.
TenBarge
and
G. G.
Howes
, “
Current sheets and collisionless damping in kinetic plasma turbulence
,”
Astrophys. J. Lett.
771
,
L27
(
2013
);
J. M.
TenBarge
and
G. G.
Howes
, e-print arXiv:1304.2958 [physics.plasm-ph].
21.
T. N.
Parashar
,
M. A.
Shay
,
P. A.
Cassak
, and
W. H.
Matthaeus
, “
Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma
,”
Phys. Plasmas
16
,
032310
(
2009
).
22.
T. N.
Parashar
,
S.
Servidio
,
B.
Breech
,
M. A.
Shay
, and
W. H.
Matthaeus
, “
Kinetic driven turbulence: Structure in space and time
,”
Phys. Plasmas
17
,
102304
(
2010
).
23.
T. N.
Parashar
,
S.
Servidio
,
M. A.
Shay
,
B.
Breech
, and
W. H.
Matthaeus
, “
Effect of driving frequency on excitation of turbulence in a kinetic plasma
,”
Phys. Plasmas
18
,
092302
(
2011
).
You do not currently have access to this content.