The dynamics of ions traversing sheaths in low temperature plasmas are important to the formation of the ion energy distribution incident onto surfaces during microelectronics fabrication. Ion dynamics have been measured using laser-induced fluorescence (LIF) in the sheath above a 30 cm diameter, 2.2 MHz-biased silicon wafer in a commercial inductively coupled plasma processing reactor. The velocity distribution of argon ions was measured at thousands of positions above and radially along the surface of the wafer by utilizing a planar laser sheet from a pulsed, tunable dye laser. Velocities were measured both parallel and perpendicular to the wafer over an energy range of 0.4–600 eV. The resulting fluorescence was recorded using a fast CCD camera, which provided resolution of 0.4 mm in space and 30 ns in time. Data were taken at eight different phases during the 2.2 MHz cycle. The ion velocity distributions (IVDs) in the sheath were found to be spatially non-uniform near the edge of the wafer and phase-dependent as a function of height. Several cm above the wafer the IVD is Maxwellian and independent of phase. Experimental results were compared with simulations. The experimental time-averaged ion energy distribution function as a function of height compare favorably with results from the computer model.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
, in
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons
,
Hoboken, NJ
,
2005
).
2.
A.
Metze
,
D. W.
Ernie
, and
H. J.
Oskam
,
J. Appl. Phys.
60
,
3081
(
1986
).
3.
M. S.
Barnes
,
J. C.
Forster
, and
J. H.
Keller
,
IEEE Trans. Plasma Sci.
19
,
240
(
1991
).
4.
D. B.
Graves
and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
21
,
S152
(
2003
).
5.
V.
Georgieva
,
A.
Bogaerts
, and
R.
Gijbels
,
Phys. Rev. E
69
,
026406
(
2004
).
6.
J. K.
Lee
,
O. V.
Manuilenko
,
N. Y.
Babaeva
,
H. C.
Kim
, and
J. W.
Shon
,
Plasma Sources Sci. Technol.
14
,
89
(
2005
).
7.
Z. Q.
Guan
,
Z. L.
Dai
, and
Y. N.
Wang
,
Phys. Plasmas
12
,
123502
(
2005
).
8.
A.
Agarwal
and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
23
,
1440
(
2005
).
9.
A.
Agarwal
,
P. J.
Stout
,
S.
Banna
,
S.
Rauf
,
K.
Tokashiki
,
J.-Y.
Lee
, and
K.
Collins
,
J. Appl. Phys.
106
,
103305
(
2009
).
10.
P.
Benoit-Cattin
and
L.-C.
Bernard
,
J. Appl. Phys.
39
,
5723
(
1968
).
11.
M. A.
Liebermann
,
IEEE Trans. Plasma Sci.
16
,
638
(
1988
).
12.
P. A.
Miller
and
M. E.
Riley
,
J. Appl. Phys.
82
,
3689
(
1997
).
13.
E.
Kawamura
,
V.
Vahedi
,
M. A.
Lieberman
, and
C. K.
Birdsall
,
Plasma Sources Sci. Technol.
8
,
R45
(
1999
).
14.
T.
Panagopoulos
and
D. J.
Economou
,
J. Appl. Phys.
85
,
3435
(
1999
).
15.
D.
Bose
,
T. R.
Govindan
, and
M.
Meyyappan
,
J. Appl. Phys.
87
,
7176
(
2000
).
16.
J.
Robiche
,
P. C.
Boyle
,
M. M.
Turner
, and
A. R.
Ellingboe
,
J. Phys. D
36
,
1810
(
2003
).
17.
A. C. F.
Wu
,
M. A.
Lieberman
, and
J. P.
Verboncoeur
,
J. Appl. Phys.
101
,
056105
(
2007
).
18.
J. P.
Booth
,
G.
Curley
,
D.
Marić
, and
P.
Chabert
,
Plasma Sources Sci. Technol.
19
,
015005
(
2010
).
19.
H.
Shin
,
W.
Zhu
,
L.
Xu
,
V. M.
Donnelley
, and
D. J.
Economou
,
Plasma Sources Sci. Technol.
20
,
055001
(
2011
).
20.
J. W.
Coburn
and
E.
Kay
,
J. Appl. Phys.
43
,
4965
(
1972
).
21.
K.
Kohler
,
D. E.
Horne
, and
J. W.
Coburn
,
J Appl. Phys.
58
,
3350
(
1985
).
22.
A. D.
Kuypers
and
H. J.
Hopman
,
J. Appl. Phys.
67
,
1229
(
1990
).
23.
A.
Manenschijn
,
G. C. A. M.
Jannssen
,
E.
van der Drift
, and
S.
Radelaar
,
J. Appl. Phys.
69
,
1253
(
1991
).
24.
M. A.
Sobelewski
,
J. K.
Olthoff
, and
Y.
Wang
,
J Appl. Phys.
85
,
3966
(
1999
).
25.
M. A.
Sobelewski
,
J. Appl. Phys.
95
,
4593
(
2004
).
26.
J. R.
Woodworth
,
M. E.
Riley
,
P. A.
Miller
,
G. A.
Hebner
, and
T. W.
Hamilton
,
J. Appl. Phys.
81
,
5950
(
1997
).
27.
J. R.
Woodworth
,
I. C.
Abraham
,
M. E.
Riley
,
P. A.
Miller
,
T. W.
Hamilton
,
B. P.
Aragon
,
R. J.
Shul
, and
C. G.
Wilson
,
J. Vac. Sci. Technol. A
20
,
873
(
2002
).
28.
N.
Sadeghi
,
M.
van de Griff
,
D.
Vander
,
G. M. W.
Kroesen
, and
F. J.
de Hoog
,
Appl. Phys. Lett.
70
,
835
(
1997
).
29.
L.
Oksuz
,
M.
Atta Khedr
, and
N.
Hershkowitz
,
Phys. Plasmas
8
,
1729
(
2001
).
30.
N.
Claire
,
G.
Bachet
,
U.
Stroth
, and
F.
Doveil
,
Phys. Plasmas
13
,
062103
(
2006
).
31.
B.
Jacobs
,
W.
Gekelman
,
P.
Pribyl
,
M.
Barnes
, and
M.
Kilgore
,
Appl. Phys. Lett.
91
,
161505
(
2007
).
32.
D. C.
Zimmerman
,
R.
McWilliams
, and
D. A.
Edrich
,
Plasma Sources Sci. Technol
14
,
581
(
2005
).
33.
D.
Lee
,
H.
Hershkowitz
, and
G.
Severn
,
Phys. Plasmas
15
,
083503
(
2008
).
34.
B.
Jacobs
,
W.
Gekelman
,
P.
Pribyl
, and
M.
Barnes
,
Phys. Rev. Lett.
105
,
075001
(
2010
).
35.
R. A.
Stern
and
J. A.
Johnson
,
Phys. Rev. Lett.
34
,
1548
(
1975
).
36.
D. D.
Burgess
and
C. H.
Skinner
,
J. Phys. B
7
,
L297
(
1974
).
37.
D. N.
Hill
,
S.
Fornaca
, and
M. G.
Wickham
,
Rev. Sci. Instrum.
54
,
309
(
1983
).
38.
R.
McWilliams
,
J. P.
Booth
,
E. A.
Hudson
,
J.
Thomas
, and
D.
Zimmerman
,
Thin Solid Films
515
,
4860
(
2007
).
39.
M. J.
Goeckner
,
J.
Goree
, and
T. E.
Sheridan
,
Phys. Fluids B
4
,
1663
(
1992
).
40.
M. J.
Goeckner
and
J.
Goree
,
J. Vac. Sci. Technol. A
7
,
977
(
1989
).
41.
M. J.
Goeckner
,
J.
Goree
, and
T. E.
Sheridan
,
Phys. Fluids B
3
,
2913
(
1991
).
42.
S.
Jun
,
H. Y.
Chang
, and
R.
McWilliams
,
Phys. Plasmas
13
,
052512
(
2006
).
43.
E. V.
Barnat
and
G. A.
Hebner
,
Appl. Phys. Lett.
85
,
3393
(
2004
).
44.
E. V.
Barnat
,
P. A.
Miller
,
G. A.
Hebner
,
A. M.
Paterson
,
T.
Panagopoulos
,
E.
Hammond
, and
J.
Holland
,
Plasma Sources Sci. Technol.
16
,
330
(
2007
).
45.
J. M.
Hollis
,
J. E.
Dorband
, and
F.
Yusef-Zadeh
,
Astrophys. J.
386
,
293
(
1992
).
46.
M. J.
Kushner
,
J. Phys. D
42
,
194013
(
2009
).
47.
J.
Lu
and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
19
,
2652
(
2001
).
48.
S.
Rauf
and
M. J.
Kushner
,
J. Appl. Phys.
82
,
2805
(
1997
).
You do not currently have access to this content.