Capacitively coupled radio-frequency (RF) discharges have great significance for industrial applications. Collisionless electron heating in such discharges is important, and sometimes is the dominant mechanism. This heating is usually understood to originate in a stochastic interaction between electrons and the electric fields. However, other mechanisms may also be important. There is evidence of wave emission with a frequency near the electron plasma frequency, i.e., ωpe, from the sheath region in collisionless capacitive RF discharges. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. These waves are damped in a few centimeters during their propagation from the sheath towards the bulk plasma. The damping occurs because of the Landau damping or some related mechanism. This research work reports that the emission of waves is associated with a field reversal during the expanding phase of the sheath. Trapping of electrons near to this field reversal region is observed. The amplitude of the wave increases with increasing RF current density amplitude J̃0 until some maximum is reached, beyond which the wave diminishes and a new regime appears. In this new regime, the density of the bulk plasma suddenly increases because of ion reflection, which occurs due to the presence of strong field reversal near sheath region. Our calculation shows that these waves are electron plasma waves. These phenomena occur under extreme conditions (i.e., higher J̃0 than in typical experiments) for sinusoidal current waveforms, but similar effects may occur with non-sinusoidal pulsed waveforms for conditions of experimental interest, because the rate of change of current is a relevant parameter. The effect of electron elastic collisions on plasma waves is also investigated.

1.
I. B.
Berstein
,
J. M.
Greene
, and
M. D.
Kruskal
,
Phys. Rev.
108
,
546
(
1957
).
2.
G.
Manfredi
,
Phys. Rev. Lett.
79
,
2815
(
1997
).
3.
M. V.
Medvedev
,
P. H.
Diamond
,
M. N.
Rosenbluth
, and
V. I.
Shevchenko
,
Phys. Rev. Lett.
81
,
5824
(
1998
).
4.
T.
Gans
,
V. S.
von der Gathen
, and
H. F.
Döbele
,
Europhys. Lett.
66
,
232
(
2004
).
5.
T.
Gans
,
V.
Schulz-von der Gathen
, and
H. F.
Döbele
,
Contrib. Plasma Phys.
44
,
523
(
2004
).
6.
T.
Gans
,
J.
Schulze
,
D.
O'Connell
,
U.
Czarnetzki
,
R.
Faulkner
,
A. R.
Ellingboe
, and
M. M.
Turner
,
Appl. Phys. Lett.
89
,
261502
(
2006
).
7.
D.
O'Connell
,
T.
Gans
,
D.
Vender
,
U.
Czarnetzki
, and
R.
Boswell
,
Phys. Plasmas
14
,
034505
(
2007
).
8.
D.
O'Connell
,
T.
Gans
,
A.
Meige
,
P.
Awakowicz
, and
R. W.
Boswell
,
IEEE Trans. Plasma Sci.
36
,
1382
(
2008
).
9.
A.
Meige
,
D.
O'Connell
,
T.
Gans
, and
R. W.
Boswell
,
IEEE Trans. Plasma Sci.
36
,
1384
(
2008
).
10.
G.
Gozadinos
,
D.
Vender
,
M. M.
Turner
, and
M. A.
Lieberman
,
Plasma Sources Sci. Technol.
10
,
117
(
2001
).
11.
D.
Vender
and
R. W.
Boswell
,
J. Vac. Sci. Technol. A
10
,
1331
(
1992
).
12.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
16
,
638
(
1988
).
13.
V. A.
Godyak
,
Sov. Phys. Tech. Phys.
16
(
7
),
1073
(
1972
).
14.
I. D.
Kaganovich
,
Phys. Rev. Lett.
89
,
265006
(
2002
).
15.
A. I.
Akhiezer
and
A. S.
Bakai
,
Sov. Phys. Dokl.
16
,
1065
(
1972
).
16.
M.
Surendra
and
D. B.
Graves
,
IEEE Trans. Plasma Sci.
19
,
144
(
1991
).
17.
G.
Gozadinos
,
M. M.
Turner
, and
D.
Vender
,
Phys. Rev. Lett.
87
,
135004
(
2001
).
18.
V. A.
Godyak
,
Sov. J. Plasma Phys.
2
,
78
(
1976
).
19.
V. A.
Godyak
,
O. A.
Popov
, and
A. H.
Khanna
,
Sov. J. Plasma Phys.
2
,
560
(
1976
).
20.
V. A.
Godyak
and
O. A.
Popov
,
Sov. J. Plasma Phys.
5
,
227
(
1979
).
21.
O. A.
Popov
and
V. A.
Godyak
,
J. Appl. Phys.
57
,
53
(
1985
).
22.
V. A.
Godyak
and
R. B.
Piejak
,
Phys. Rev. Lett.
65
,
996
(
1990
).
23.
J.
Borovsky
,
Phys. Fluids
31
,
1074
(
1988
).
24.
Y. M.
Aliev
,
I. D.
Kaganovich
, and
H.
Schlüuter
,
Electron Kinetics and Application of Glow Discharges, NATO ASI Series B
Vol.
367
(
Kluwer
,
New York
,
1998
), p.
257
.
25.
Y. M.
Aliev
,
I. D.
Kaganovich
, and
H.
Schlüuter
,
Phys. Plasmas.
4
,
2413
(
1997
).
26.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Material Processing
(
Wiley
,
New York
,
1994
).
27.
28.
M.
Surendra
and
D. B.
Graves
,
Phys. Rev. Lett.
66
,
1469
(
1991
).
29.
M.
Surendra
and
M.
Dalvie
,
Phys. Rev. E
48
,
3914
(
1993
).
30.
M. M.
Turner
,
Electron Kinetics and Application of Glow Discharges, NATO ASI Series B
Vol.
367
(
Kluwer
,
New York
,
1998
).
31.
L. D.
Landau
,
J. Phys.
10
,
25
(
1946
).
32.
G.
Gozadinos
,
D.
Vender
, and
M. M.
Turner
,
J. Comput. Phys.
172
,
348
(
2001
).
33.
T.
Gans
,
C. C.
Lin
,
V.
Schulz-von der Gathen
, and
H. F.
Döbele
,
Phys. Rev. A, Gen. Phys.
67
,
012707
(
2003
).
34.
M. M.
Turner
and
M. B.
Hopkins
,
Phys. Rev. Lett.
69
,
3511
(
1992
).
35.
U.
Czarnetzki
,
D.
Luggenholscher
, and
H. F.
Döbele
,
Plasma Sources Sci. Technol.
8
,
230
(
1999
).
36.
R. A.
Gottscho
,
Phys. Rev. A, Gen. Phys.
36
,
2233
(
1987
).
37.
A. H.
Sato
and
M. A.
Lieberman
,
J. Appl. Phys.
68
,
6117
(
1990
).
38.
B. P.
Wood
,
M. A.
Lieberman
, and
A. J.
Lichtenberg
,
IEEE Trans. Plasma Sci.
19
,
619
(
1991
).
39.
T.
Lafleur
,
R. W.
Boswell
, and
J. P.
Booth
,
Appl. Phys. Lett.
100
(
19
),
194101
(
2012
).
40.
T.
Lafleur
,
P. A.
Delattre
,
E. V.
Johnson
, and
J. P.
Booth
,
Appl. Phys. Lett.
101
,
124104
(
2012
).
41.
S.
Sharma
and
M. M.
Turner
, “
Simulation study of stochastic heating in single frequency capacitively coupled discharges with critical evaluation of analytical models
,”
Plasma Sources Sci. Technol.
22
(
3
),
035014
(
2013
).
42.
S.
Sharma
, “
Investigation of ion and electron kinetic phenomena in capacitively coupled radio-frequency plasma sheaths: A simulation study
,” Ph.D. thesis (
Dublin City University
, Dublin, Ireland,
2013
).
You do not currently have access to this content.