Turbulence in space and astrophysical plasmas is governed by the nonlinear interactions between counterpropagating Alfvén waves. Here, we present the theoretical considerations behind the design of the first laboratory measurement of an Alfvén wave collision, the fundamental interaction underlying Alfvénic turbulence. By interacting a relatively large-amplitude, low-frequency Alfvén wave with a counterpropagating, smaller-amplitude, higher-frequency Alfvén wave, the experiment accomplishes the secular nonlinear transfer of energy to a propagating daughter Alfvén wave. The predicted properties of the nonlinearly generated daughter Alfvén wave are outlined, providing a suite of tests that can be used to confirm the successful measurement of the nonlinear interaction between counterpropagating Alfvén waves in the laboratory.

1.
S. W.
McIntosh
,
B.
de Pontieu
,
M.
Carlsson
,
V.
Hansteen
,
P.
Boerner
, and
M.
Goossens
, “
Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind
,”
Nature
475
,
477
480
(
2011
).
2.
J. W.
Armstrong
,
J. M.
Cordes
, and
B. J.
Rickett
, “
Density power spectrum in the local interstellar medium
,”
Nature
291
,
561
564
(
1981
).
3.
J. W.
Armstrong
,
B. J.
Rickett
, and
S. R.
Spangler
, “
Electron density power spectrum in the local interstellar medium
,”
Astrophys. J.
443
,
209
221
(
1995
).
4.
B. M.
Gaensler
,
M.
Haverkorn
,
B.
Burkhart
,
K. J.
Newton-McGee
,
R. D.
Ekers
,
A.
Lazarian
,
N. M.
McClure-Griffiths
,
T.
Robishaw
,
J. M.
Dickey
, and
A. J.
Green
, “
Low-Mach-number turbulence in interstellar gas revealed by radio polarization gradients
,”
Nature
478
,
214
217
(
2011
); e-print arXiv:1110.2896 [astro-ph.GA].
5.
B. J.
Rickett
, “
Radio propagation through the turbulent interstellar plasma
,”
Ann. Rev. Astron. Astrophys.
28
,
561
605
(
1990
).
6.
J. R.
Peterson
and
A. C.
Fabian
, “
X-ray spectroscopy of cooling clusters
,”
Phys. Rep.
427
,
1
39
(
2006
); e-print arXiv:astro-ph/0512549.
7.
D.
Sundkvist
,
V.
Krasnoselskikh
,
P. K.
Shukla
,
A.
Vaivads
,
M.
André
,
S.
Buchert
, and
H.
Rème
, “
In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence
,”
Nature
436
,
825
828
(
2005
).
8.
H.
Alfvén
, “
Existence of electromagnetic-hydrodynamic waves
,”
Nature
150
,
405
406
(
1942
).
9.
J. W.
Belcher
and
L.
Davis
, “
Large-amplitude Alfvén waves in the interplanetary medium, 2
,”
J. Geophys. Res.
76
,
3534
3563
, doi: (
1971
).
10.
R. H.
Kraichnan
, “
Inertial range spectrum of hyromagnetic turbulence
,”
Phys. Fluids
8
,
1385
1387
(
1965
).
11.
S.
Sridhar
and
P.
Goldreich
, “
Toward a theory of interstellar turbulence. 1: Weak Alfvenic turbulence
,”
Astrophys. J.
432
,
612
621
(
1994
).
12.
P.
Goldreich
and
S.
Sridhar
, “
Toward a theery of interstellar turbulence ii. Strong Alfvénic turbulence
,”
Astrophys. J.
438
,
763
775
(
1995
).
13.
S.
Boldyrev
, “
Spectrum of magnetohydrodynamic turbulence,”
Phys. Rev. Lett.
96
,
115002
(
2006
); e-print arXiv:astro-ph/0511290.
14.
W.
Gekelman
,
H.
Pfister
,
Z.
Lucky
,
J.
Bamber
,
D.
Leneman
, and
J.
Maggs
, “
Design, construction, and properties of the large plasma research device—The LAPD at UCLA
,”
Rev. Sci. Instrum.
62
,
2875
2883
(
1991
).
15.
G. G.
Howes
,
D. J.
Drake
,
K. D.
Nielson
,
T. A.
Carter
,
C. A.
Kletzing
, and
F.
Skiff
, “
Toward astrophysical turbulence in the laboratory,”
Phys. Rev. Lett.
109
,
255001
(
2012
); e-print arXiv:1210.4568 [physics.plasm-ph].
16.
G. G.
Howes
and
K. D.
Nielson
, “
Alfven wave collisions, the fundamental building block of plasma turbulence. I. Asymptotic solution
,”
Phys. Plasmas
20
,
072302
(
2013
).
17.
K. D.
Nielson
,
G. G.
Howes
, and
W.
Dorland
, “
Alfven wave collisions, the fundamental building block of plasma turbulence. II. Numerical solution
,”
Phys. Plasmas
20
,
072303
(
2013
).
18.
D. J.
Drake
,
J. W. R.
Schroeder
,
G. G.
Howes
,
F.
Skiff
,
C. A.
Kletzing
,
T. A.
Carter
, and
D. W.
Auerbach
, “
Alfven wave collisions, the fundamental building block of plasma turbulence. IV. Laboratory experiment
,”
Phys. Plasmas
20
,
072901
(
2013
).
19.
G. G.
Howes
,
K. D.
Nielson
,
J. W. R.
Schroeder
,
D. J.
Drake
,
F.
Skiff
,
C. A.
Kletzing
, and
T. A.
Carter
, “
Alfven wave collisions, the fundamental building block of plasma turbulence V: Simulations and magnetic shear interpretation
,”
Phys. Plasmas
(to be published).
20.
W. M.
Elsasser
, “
The hydromagnetic equations
,”
Phys. Rev.
79
,
183
(
1950
).
21.
A. A.
Schekochihin
,
S. C.
Cowley
,
W.
Dorland
,
G. W.
Hammett
,
G. G.
Howes
,
E.
Quataert
, and
T.
Tatsuno
, “
Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas
,”
Astrophys. J. Supp.
182
,
310
377
(
2009
).
22.
D. C.
Robinson
and
M. G.
Rusbridge
, “
Structure of turbulence in the zeta plasma
,”
Phys. Fluids
14
,
2499
2511
(
1971
).
23.
S. J.
Zweben
,
C. R.
Menyuk
, and
R. J.
Taylor
, “
Small-scale magnetic fluctuations inside the macrotor tokamak
,”
Phys. Rev. Lett.
42
,
1270
1274
(
1979
).
24.
D.
Montgomery
and
L.
Turner
, “
Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field
,”
Phys. Fluids
24
,
825
831
(
1981
).
25.
J. V.
Shebalin
,
W. H.
Matthaeus
, and
D.
Montgomery
, “
Anisotropy in MHD turbulence due to a mean magnetic field
,”
J. Plasma Phys.
29
,
525
547
(
1983
).
26.
J.
Cho
and
E. T.
Vishniac
, “
The anisotropy of magnetohydrodynamic Alfvénic turbulence
,”
Astrophys. J.
539
,
273
282
(
2000
).
27.
J.
Maron
and
P.
Goldreich
, “
Simulations of incompressible magnetohydrodynamic turbulence
,”
Astrophys. J.
554
,
1175
1196
(
2001
).
28.
J.
Cho
and
A.
Lazarian
, “
The Anisotropy of Electron Magnetohydrodynamic Turbulence
,”
Astrophys. J. Lett.
615
,
L41
L44
(
2004
).
29.
J.
Cho
and
A.
Lazarian
, “
Simulations of electron magnetohydrodynamic turbulence,”
Astrophys. J.
701
,
236
252
(
2009
); e-print arXiv:0904.0661 [astro-ph.EP].
30.
F.
Sahraoui
,
M. L.
Goldstein
,
G.
Belmont
,
P.
Canu
, and
L.
Rezeau
, “
Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind
,”
Phys. Rev. Lett.
105
,
131101
(
2010
).
31.
Y.
Narita
,
S. P.
Gary
,
S.
Saito
,
K.-H.
Glassmeier
, and
U.
Motschmann
, “
Dispersion relation analysis of solar wind turbulence
,”
Geophys. Res. Lett.
38
,
L05101
, (
2011
).
32.
J. M.
TenBarge
and
G. G.
Howes
, “
Evidence of critical balance in kinetic Alfvén wave turbulence simulations
,”
Phys. Plasmas
19
,
055901
(
2012
).
33.
P. S.
Iroshnikov
, “
The turbulence of a conducting fluid in a strong magnetic field,”
Astron. Zh.
40
,
742
(
1963
)
R. S.
Iroshnikov
, [
Sov. Astron.
7
,
566
(
1964
)].
34.
Y.
Lithwick
,
P.
Goldreich
, and
S.
Sridhar
, “
Imbalanced strong MHD turbulence,”
Astrophys. J.
655
,
269
274
(
2007
); e-print arXiv:astro-ph/0607243.
35.
A.
Beresnyak
and
A.
Lazarian
, “
Strong imbalanced turbulence,”
Astrophys. J.
682
,
1070
1075
(
2008
); e-print arXiv:0709.0554.
36.
B. D. G.
Chandran
, “
Strong anisotropic MHD turbulence with cross helicity,”
Astrophys. J.
685
,
646
658
(
2008
); e-print arXiv:0801.4903.
37.
J. C.
Perez
and
S.
Boldyrev
, “
Role of cross-helicity in magnetohydrodynamic turbulence,”
Phys. Rev. Lett.
102
,
025003
(
2009
); e-print arXiv:0807.2635.
38.
J. J.
Podesta
and
A.
Bhattacharjee
, “
Theory of incompressible magnetohydrodynamic turbulence with scale-dependent alignment and cross-helicity,”
Astrophys. J.
718
,
1151
1157
(
2010
); e-print arXiv:0903.5041 [astro-ph.EP].
39.
S.
Galtier
,
S. V.
Nazarenko
,
A. C.
Newell
, and
A.
Pouquet
, “
A weak turbulence theory for incompressible magnetohydrodynamics
,”
J. Plasma Phys.
63
,
447
488
(
2000
).
40.
C. S.
Ng
and
A.
Bhattacharjee
, “
Interaction of shear-Alfven wave packets: Implication for weak magnetohydrodynamic turbulence in astrophysical plasmas
,”
Astrophys. J.
465
,
845
(
1996
).
41.
Y.
Lithwick
and
P.
Goldreich
, “
Imbalanced weak magnetohydrodynamic turbulence
,”
Astrophys. J.
582
,
1220
1240
(
2003
).
42.
D.
Montgomery
and
W. H.
Matthaeus
, “
Anisotropic modal energy transfer in interstellar turbulence
,”
Astrophys. J.
447
,
706
(
1995
).
43.
P.
Goldreich
and
S.
Sridhar
, “
Magnetohydrodynamic turbulence revisited
,”
Astrophys. J.
485
,
680
688
(
1997
).
44.
D. W.
Auerbach
,
T. A.
Carter
,
S.
Vincena
, and
P.
Popovich
, “
Resonant drive and nonlinear suppression of gradient-driven instabilities via interaction with shear Alfvén waves
,”
Phys. Plasmas
18
,
055708
(
2011
).
45.
D. J.
Thuecks
,
C. A.
Kletzing
,
F.
Skiff
,
S. R.
Bounds
, and
S.
Vincena
, “
Tests of collision operators using laboratory measurements of shear Alfvén wave dispersion and damping
,”
Phys. Plasmas
16
,
052110
(
2009
).
46.
C. A.
Kletzing
,
D. J.
Thuecks
,
F.
Skiff
,
S. R.
Bounds
, and
S.
Vincena
, “
Measurements of inertial limit Alfvén wave dispersion for finite perpendicular wave number
,”
Phys. Rev. Lett.
104
,
095001
(
2010
).
47.
K. D.
Nielson
,
G. G.
Howes
,
T.
Tatsuno
,
R.
Numata
, and
W.
Dorland
, “
Numerical modeling of large plasma device Alfvén wave experiments using AstroGK
,”
Phys. Plasmas
17
,
022105
(
2010
).
48.
D. J.
Drake
,
C. A.
Kletzing
,
F.
Skiff
,
G. G.
Howes
, and
S.
Vincena
, “
Design and use of an Elsässer probe for analysis of Alfvén wave fields according to wave direction
,”
Rev. Sci. Instrum.
82
,
103505
(
2011
).
49.
S.
Dorfman
and
T. A.
Carter
, “
Nonlinear excitation of acoustic modes by large-amplitude Alfvén waves in a laboratory plasma,”
Phys. Rev. Lett.
110
,
195001
(
2013
); e-print arXiv:1304.3379 [physics.plasm-ph].
50.
A. A.
Galeev
and
V. N.
Oraevskii
, “
The stability of Alfvén waves
,”
Sov. Phys. Dokl.
7
,
988
(
1963
).
51.
R. Z.
Sagdeev
and
A. A.
Galeev
,
Nonlinear Plasma Theory
(
New York
,
Benjamin
,
1969
).
52.
C. N.
Lashmore-Davies
, “
Modulational instability of a finite amplitude Alfven wave
,”
Phys. Fluids
19
,
587
589
(
1976
).
53.
H. K.
Wong
and
M. L.
Goldstein
, “
Parametric instabilities of the circularly polarized Alfven waves including dispersion
,”
J. Geophys. Res.
91
,
5617
5628
, doi: (
1986
).
54.
J. V.
Hollweg
, “
Beat, modulational, and decay instabilities of a circularly polarized Alfven wave
,”
J. Geophys. Res.
99
,
23431
, doi: (
1994
).
55.
N. F.
Derby
, Jr.
, “
Modulational instability of finite-amplitude, circularly polarized Alfven waves
,”
Astrophys. J.
224
,
1013
1016
(
1978
).
56.
M. L.
Goldstein
, “
An instability of finite amplitude circularly polarized Alfven waves
,”
Astrophys. J.
219
,
700
704
(
1978
).
57.
S. R.
Spangler
and
J. P.
Sheerin
, “
Properties of Alfven solitons in a finite-beta plasma
,”
J. Plasma Phys.
27
,
193
198
(
1982
).
58.
J.-I.
Sakai
and
U. O.
Sonnerup
, “
Modulational instability of finite amplitude dispersive Alfven waves
,”
J. Geophys. Res.
88
,
9069
9079
, doi: (
1983
).
59.
S. R.
Spangler
, “
The evolution of nonlinear Alfven waves subject to growth and damping
,”
Phys. Fluids
29
,
2535
2547
(
1986
).
60.
T.
Terasawa
,
M.
Hoshino
,
J.-I.
Sakai
, and
T.
Hada
, “
Decay instability of finite-amplitude circularly polarized Alfven waves—A numerical simulation of stimulated Brillouin scattering
,”
J. Geophys. Res.
91
,
4171
4187
, doi: (
1986
).
61.
V. I.
Shevchenko
,
R. Z.
Sagdeev
,
V. L.
Galinsky
, and
M. V.
Medvedev
, “
The DNLS equation and parametric decay instability
,”
Plasma Phys. Rep.
29
,
545
549
(
2003
).
62.
O. W.
Roberts
,
X.
Li
, and
B.
Li
, “
Kinetic plasma turbulence in the fast solar wind measured by Cluster
,”
Astrophys. J.
769
,
58
(
2013
); e-print arXiv:1303.5129 [astro-ph.SR].
63.
J.
Cho
and
A.
Lazarian
, “
Compressible magnetohydrodynamic turbulence:Mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications
,”
Mon. Not. Roy. Astron. Soc.
345
,
325
339
(
2003
).
You do not currently have access to this content.