From spacecraft data, it is evident that electron pressure anisotropy develops in collisionless plasmas. This is in contrast to the results of theoretical investigations, which suggest this anisotropy should be limited. Common for such theoretical studies is that the effects of electron trapping are not included; simply speaking, electron trapping is a non-linear effect and is, therefore, eliminated when utilizing the standard methods for linearizing the underlying kinetic equations. Here, we review our recent work on the anisotropy that develops when retaining the effects of electron trapping. A general analytic model is derived for the electron guiding center distribution f¯(v,v) of an expanding flux tube. The model is consistent with anisotropic distributions observed by spacecraft, and is applied as a fluid closure yielding anisotropic equations of state for the parallel and perpendicular components (relative to the local magnetic field direction) of the electron pressure. In the context of reconnection, the new closure accounts for the strong pressure anisotropy that develops in the reconnection regions. It is shown that for generic reconnection in a collisionless plasma nearly all thermal electrons are trapped, and dominate the properties of the electron fluid. A new numerical code is developed implementing the anisotropic closure within the standard two-fluid framework. The code accurately reproduces the detailed structure of the reconnection region observed in fully kinetic simulations. These results emphasize the important role of pressure anisotropy for the reconnection process. In particular, for reconnection geometries characterized by small values of the normalized upstream electron pressure, βe, the pressure anisotropy becomes large with pp and strong parallel electric fields develop in conjunction with this anisotropy. The parallel electric fields can be sustained over large spatial scales and, therefore, become important for electron acceleration.

1.
S.
Braginskii
,
Review of Plasma Physics
(
Consultants Bureau
,
New York
,
1965
), Vol. 1.
2.
J. J.
Ramos
, “
Fluid and drift-kinetic description of a magnetized plasma with low collisionality and slow dynamics orderings. I. Electron theory
,”
Phys. Plasmas
17
,
082502
(
2010
).
3.
Z.
Guo
and
X.-Z.
Tang
, “
Parallel transport of long mean-free-path plasma along open magnetic field lines: Parallel heat flux
,”
Phys. Plasmas
19
,
062501
(
2012
).
4.
Z.
Guo
and
X.-Z.
Tang
, “
Parallel heat flux from low to high parallel temperature along a magnetic field line
,”
Phys. Rev. Lett.
108
,
165005
(
2012
).
5.
J.
Dungey
, “
Conditions for the occurrence of electrical discharges in astrophysical systems
,”
Philos. Mag.
44
,
725
(
1953
).
6.
E.
Priest
and
T.
Forbes
,
Magnetic Reconnection
(
Cambridge University Press
,
2000
).
7.
J. B.
Taylor
, “
Relaxation and magnetic reconnection in plasmas
,”
Rev. Mod. Phys.
58
,
741
763
(
1986
).
8.
V. M.
Vasyliunas
, “
Theoretical models of magnetic-field line merging
,”
Rev. Geophys.
13
(
1
),
303
336
, doi: (
1975
).
9.
S.
Masuda
,
T.
Kosugi
,
H.
Hara
, and
Y.
Ogawaray
, “
A loop top hard x-ray source i a compact solar-flare as evidence for magnetic reconnection
,”
Nature
371
,
495
497
(
1994
).
10.
T. D.
Phan
,
L. M.
Kistler
,
B.
Klecker
,
G.
Haerendel
,
G.
Paschmann
,
B. U. O.
Sonnerup
,
W.
Baumjohann
,
M. B.
Bavassano-Cattaneo
,
C. W.
Carlson
,
A. M.
Dilellis
,
K. H.
Fornacon
,
L. A.
Frank
,
M.
Fujimoto
,
E.
Georgescu
,
S.
Kokubun
,
E.
Moebius
,
T.
Mukai
,
M.
Øieroset
,
W. R.
Paterson
, and
H.
Reme
, “
Extended magnetic reconnection at the earth's magnetopause from detection of bi-directional jets
,”
Nature
404
,
848
850
(
2000
).
11.
Z.
Ma
and
A.
Bhattacharjee
, “
Fast impulsive reconnection and current sheet intensification due to electron pressure gradients in semi-collisional plasmas
,”
Geophys. Res. Lett.
23
,
1673
1676
, doi: (
1996
).
12.
D.
Biskamp
,
E.
Schwarz
, and
J. F.
Drake
, “
Two-fluid theory of collisionless magnetic reconnection
,”
Phys. Plasmas
4
,
1002
1009
(
1997
).
13.
J.
Birn
,
J. F.
Drake
,
M. A.
Shay
,
B. N.
Rogers
,
R. E.
Denton
,
M.
Hesse
,
M.
Kuznetsova
,
Z. W.
Ma
,
A.
Bhattacharjee
,
A.
Otto
, and
P. L.
Pritchett
, “
Geospace environmental modeling (GEM) magnetic reconnection challenge
,”
J. Geophys. Res.
106
,
3715
3719
, doi: (
2001
).
14.
M.
Øieroset
,
R.
Lin
, and
T.
Phan
, “
Evidence for electron acceleration up to similar to 300 kev in the magnetic reconnection diffusion region of earth's magnetotail
,”
Phys. Rev. Lett.
89
,
195001
(
2002
).
15.
J.
Egedal
,
M.
Øieroset
,
W.
Fox
, and
R. P.
Lin
, “
In situ discovery of an electrostatic potential, trapping electrons and mediating fast reconnection in the earth's magnetotail
,”
Phys. Rev. Lett.
94
,
025006
(
2005
).
16.
L. J.
Chen
,
N.
Bessho
,
B.
Lefebvre
,
H.
Vaith
,
A.
Fazakerley
,
A.
Bhattacharjee
,
P. A.
Puhl-Quinn
,
A.
Runov
,
Y.
Khotyaintsev
,
A.
Vaivads
,
E.
Georgescu
, and
R.
Torbert
, “
Evidence of an extended electron current sheet and its neighboring magnetic island during magnetotail reconnection
,”
J. Geophys. Res.
113
,
A12213
, doi: (
2008
).
17.
J.
Egedal
,
W.
Daughton
,
J. F.
Drake
,
N.
Katz
, and
A.
Le
, “
Formation of a localized acceleration potential during magnetic reconnection with a guide field
,”
Phys. Plasmas
16
,
050701
(
2009
).
18.
A.
Le
,
J.
Egedal
,
W.
Daughton
,
W.
Fox
, and
N.
Katz
, “
Equations of state for collisionless guide-field reconnection
,”
Phys. Rev. Lett.
102
,
085001
(
2009
).
19.
O.
Ohia
,
J.
Egedal
,
V. S.
Lukin
,
W.
Daughton
, and
A.
Le
, “
Demonstration of anisotropic fluid closure capturing the kinetic structure of magnetic reconnection
,”
Phys. Rev. Lett.
109
,
115004
(
2012
).
20.
J.
Egedal
,
W.
Fox
,
N.
Katz
,
M.
Porkolab
,
M.
Øieroset
,
R. P.
Lin
,
W.
Daughton
, and
J. F.
Drake
, “
Evidence and theory for trapped electrons in guide field magnetotail reconnection
,”
J. Geophys. Res.
113
,
A12207
, doi: (
2008
).
21.
J.
Egedal
,
W.
Daughton
, and
A.
Le
, “
Large-scale electron acceleration by parallel electric fields during magnetic reconnection
,”
Nat. Phys.
8
,
321
324
(
2012
).
22.
J.
Egedal
,
A.
Fasoli
,
M.
Porkolab
, and
D.
Tarkowski
, “
Plasma generation and confinement in a toroidal magnetic cusp
,”
Rev. Sci. Instrum.
71
,
3351
3361
(
2000
).
23.
J.
Egedal
,
W.
Fox
,
N.
Katz
,
M.
Porkolab
,
K.
Reim
, and
E.
Zhang
, “
Laboratory observations of spontaneous magnetic reconnection
,”
Phys. Rev. Lett.
98
,
015003
(
2007
).
24.
N.
Katz
,
J.
Egedal
,
W.
Fox
,
A.
Le
,
J.
Bonde
, and
A.
Vrublevskis
, “
Laboratory observation of localized onset of magnetic reconnection
,”
Phys. Rev. Lett.
104
,
255004
(
2010
).
25.
N.
Katz
,
J.
Egedal
,
W.
Fox
,
A.
Le
,
A.
Vrublevskis
, and
J.
Bonde
, “
Experimental investigation of the trigger problem in magnetic reconnection
,” in
52nd Annual Meeting of the APS Division of Plasma Physics, Chicago, IL, 2010
N.
Katz
,
J.
Egedal
,
W.
Fox
,
A.
Le
,
A.
Vrublevskis
, and
J.
Bonde
, [
Phys. Plasmas
18
,
055707
(
2011
)].
26.
J.
Egedal
,
N.
Katz
,
J.
Bonde
,
W.
Fox
,
A.
Le
,
M.
Porkolab
, and
A.
Vrublevskis
, “
Spontaneous onset of magnetic reconnection in toroidal plasma caused by breaking of 2d symmetry
,”
Phys. Plasmas
18
,
111203
(
2011
).
27.
J.
Egedal
and
A.
Fasoli
, “
Single-particle dynamics in collisionless magnetic reconnection
,”
Phys. Rev. Lett.
86
,
5047
5050
(
2001
).
28.
J.
Egedal
,
A.
Fasoli
, and
J.
Nazemi
, “
Dynamical plasma response during driven magnetic reconnection
,”
Phys. Rev. Lett.
90
,
135003
(
2003
).
29.
R. M.
Kulsrud
,
MHD Description of Plasma
(
North-Holland Publishing Company
,
New York
,
2000
), Vol. 1.
30.
R.
Littlejohn
, “
Variational-principles of guiding center motion
,”
J. Plasma Phys.
29
,
111
125
(
1983
).
31.
J.
Egedal
,
W.
Fox
,
E.
Belonohy
, and
M.
Porkolab
, “
Kinetic simulation of the vtf magnetic reconnection experiment
,”
Comput. Phys. Commun.
164
,
29
33
(
2004
).
32.
J.
Egedal
,
W.
Fox
,
M.
Porkolab
, and
A.
Fasoli
, “
Experimental evidence of fast reconnection via trapped electron motion
,”
Phys. Plasmas
11
,
2844
2851
(
2004
).
33.
J.
Egedal
, “
A drift kinetic approach to stationary collisionless magnetic reconnection in an open cusp plasma
,”
Phys. Plasmas
9
,
1095
1103
(
2002
).
34.
J.
Egedal
,
A.
Le
,
N.
Katz
,
L. J.
Chen
,
B.
Lefebvre
,
W.
Daughton
, and
A.
Fazakerley
, “
Cluster observations of bidirectional beams caused by electron trapping during antiparallel reconnection
,”
J. Geophys. Res.
115
,
A03214
, doi: (
2010
).
35.
M.
Øieroset
,
T.
Phan
,
M.
Fujimoto
,
R. P.
Lin
, and
R. P.
Lepping
, “
In situ detection of collisionless reconnection in the earth's magnetotail
,”
Nature
412
,
414
417
(
2001
).
36.
R. D.
Hazeltine
and
J. D.
Meiss
,
Plasma Confinement
(
Addison-Wesley
,
1992
).
37.
M.
Hesse
, “
Dissipation in magnetic reconnection with a guide magnetic field
,”
Phys. Plasmas
13
,
122107
(
2006
).
38.
P. L.
Pritchett
, “
Onset of magnetic reconnection in the presence of a normal magnetic field: Realistic ion to electron mass ratio
,”
J. Geophys. Res.
115
,
A10208
, doi: (
2010
).
39.
G. F.
Chew
,
M. L.
Goldberger
, and
F. E.
Low
, “
The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions
,”
Proc. R. Soc. London. A
236
,
112
(
1956
).
40.
V. S.
Lukin
and
M. G.
Linton
, “
Three-dimensional magnetic reconnection through a moving magnetic null
,”
Nonlinear Processes Geophys.
18
(
6
),
871
882
(
2011
).
41.
A.
Le
,
J.
Egedal
,
W.
Daughton
,
H.
Karimabadi
,
O.
Ohia
, and
V. S.
Lukin
, “
Regimes of the electron diffusion region in magnetic reconnection
,”
Phys. Rev. Lett.
110
,
135004
(
2013
).
42.
A.
Le
,
J.
Egedal
,
W.
Daughton
,
J. F.
Drake
,
W.
Fox
, and
N.
Katz
, “
Magnitude of the Hall fields during magnetic reconnection
,”
Geophys. Res. Lett.
37
,
L03106
(
2010
).
43.
P.
Wu
,
M. A.
Shay
,
T. D.
Phan
,
M.
Oieroset
, and
M.
Oka
, “
Effect of inflow density on ion diffusion region of magnetic reconnection: Particle-in-cell simulations
,”
Phys. Plasmas
18
,
111204
(
2011
).
44.
R.
Horiuchi
and
H.
Ohtani
, “
Formation of non-maxwellian distribution and its role in collisionless driven reconnection
,”
Commun. Comput. Phys.
4
(
3
),
496
505
(
2008
).
45.
A.
Le
,
J.
Egedal
,
W.
Fox
,
N.
Katz
,
A.
Vrublevskis
,
W.
Daughton
, and
J. F.
Drake
, “
Equations of state in collisionless magnetic reconnection
,” in
51st Annual Meeting of the Division of Plasma Physics of the American Physical Society, Atlanta, GA, November 2-6, 2009
[Phys. Plasmas 17, 055703 (
2010
)].
46.
J.
Ng
,
J.
Egedal
,
A.
Le
,
W.
Daughton
, and
L. J.
Chen
, “
Kinetic structure of the electron diffusion region in antiparallel magnetic reconnection
,”
Phys. Rev. Lett.
106
,
065002
(
2011
).
47.
J.
Ng
,
J.
Egedal
,
A.
Le
, and
W.
Daughton
, “
Phase space structure of the electron diffusion region in reconnection with weak guide fields
,”
Phys. Plasmas
19
,
112108
(
2012
).
48.
S. W. H.
Cowley
, “
Plasma populations in a simple open model magnetosphere
,”
Space Sci. Rev.
26
(
3
),
217
275
(
1980
).
49.
T.
Phan
and
G.
Paschmann
, “
Low-latitude dayside magnetopause and boundary layer for high magnetic shear. 1. Structure and motion
,”
J. Geophys. Res.
101
,
7801
7815
, doi: (
1996
).
50.
H.
Ku
and
D.
Sibeck
, “
Internal structure of flux transfer events produced by the onset of merging at a single x line
,”
J. Geophys. Res.
102
,
2243
2260
, doi: (
1997
).
51.
P. A.
Cassak
and
M. A.
Shay
, “
Scaling of asymmetric magnetic reconnection: General theory and collisional simulations
,”
Phys. Plasmas
14
,
102114
(
2007
).
52.
J. E.
Borovsky
and
M.
Hesse
, “
The reconnection of magnetic fields between plasmas with different densities: Scaling relations
,”
Phys. Plasmas
14
,
102309
(
2007
).
53.
J.
Birn
,
J. E.
Borovsky
, and
M.
Hesse
, “
Properties of asymmetric magnetic reconnection
,”
Phys. Plasmas
15
,
032101
(
2008
).
54.
D. Q.
Ding
,
L. C.
Lee
, and
D. W.
Swift
, “
Particle simulations of driven collisionless magnetic reconnection at the dayside magnetopause
,”
J. Geophys. Res.
97
,
8453
8481
, doi: (
1992
).
55.
M.
Swisdak
,
B.
Rogers
,
J.
Drake
, and
M.
Shay
, “
Diamagnetic suppression of component magnetic reconnection at the magnetopause
,”
J. Geophys. Res.
108
(
A5
),
1218
, doi: (
2003
).
56.
K. G.
Tanaka
,
A.
Retino
,
Y.
Asano
,
M.
Fujimoto
,
I.
Shinohara
,
A.
Vaivads
,
Y.
Khotyaintsev
,
M.
Andre
,
M. B.
Bavassano-Cattaneo
,
S. C.
Buchert
, and
C. J.
Owen
, “
Effects on magnetic reconnection of a density asymmetry across the current sheet
,”
Ann. Geophys.
26
(
8
),
2471
2483
(
2008
).
57.
J.
Huang
,
Z. W.
Ma
, and
D.
Li
, “
Debye-length scaled structure of perpendicular electric field in collisionless magnetic reconnection
,”
Geophys. Res. Lett.
35
,
L10105
, doi:(
2008
).
58.
P. L.
Pritchett
, “
Collisionless magnetic reconnection in an asymmetric current sheet
,”
J. Geophys. Res.
113
,
A06210
, doi: (
2008
).
59.
P. L.
Pritchett
and
F. S.
Mozer
, “
Asymmetric magnetic reconnection in the presence of a guide field
,”
J. Geophys. Res.
114
,
A11210
, doi: (
2009
).
60.
J.
Egedal
,
A.
Le
,
P. L.
Pritchett
, and
W.
Daughton
, “
Electron dynamics in two-dimensional asymmetric anti-parallel reconnection
,”
Phys. Plasmas
18
,
102901
(
2011
).
61.
A.
Le
,
H.
Karimabadi
,
J.
Egedal
,
V.
Roytershteyn
, and
W.
Daughton
, “
Electron energization during magnetic island coalescence
,”
Phys. Plasmas
19
,
072120
(
2012
).
62.
J. R.
Wygant
,
C. A.
Cattell
,
R.
Lysak
,
Y.
Song
,
J.
Dombeck
,
J.
McFadden
,
F. S.
Mozer
,
C. W.
Carlson
,
G.
Parks
,
E. A.
Lucek
,
A.
Balogh
,
M.
Andre
,
H.
Reme
,
M.
Hesse
, and
C.
Mouikis
, “
Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region
,”
J. Geophys. Res.
110
,
A09206
, doi: (
2005
).
63.
J.
Egedal
,
A.
Le
,
Y.
Zhu
,
W.
Daughton
,
M.
Øieroset
,
T.
Phan
,
R. P.
Lin
, and
J. P.
Eastwood
, “
Cause of super-thermal electron heating during magnetotail reconnection
,”
Geophys. Res. Lett.
37
,
L10102
, doi: (
2010
).
You do not currently have access to this content.