Experiments to generate neutrons from the 7Li(p,n)7Be reaction with 60 J, 180 fs laser pulses have been performed at the Texas Petawatt Laser Facility at the University of Texas at Austin. The protons were accelerated from the rear surface of a thin target membrane using the target-normal-sheath-acceleration mechanism. The neutrons were generated in nuclear reactions caused by the subsequent proton bombardment of a pure lithium foil of natural isotopic abundance. The neutron energy ranged up to 2.9 MeV. The total yield was estimated to be 1.6 × 107 neutrons per steradian. An extreme ultra-violet light camera, used to image the target rear surface, correlated variations in the proton yield and peak energy to target rear surface ablation. Calculations using the hydrodynamics code FLASH indicated that the ablation resulted from a laser pre-pulse of prolonged intensity. The ablation severely limited the proton acceleration and neutron yield.

1.
S.
Ter-Avetisyan
 et al., “
Fusion neutron yield from a laser-irradiated heavy-water spray
,”
Phys. Plasmas
12
(
1
),
012702
(
2005
).
2.
A.
Youssef
 et al., “
Broad-range neutron spectra identification in ultraintense laser interactions with carbon-deuterated plasma
,”
Phys. Plasmas
12
(
11
),
110703
(
2005
).
3.
D. P.
Higginson
 et al., “
Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions
,”
Phys. Plasmas
18
(
10
),
100703
(
2011
).
4.
K. L.
Lancaster
 et al., “
Characterization of [sup 7]Li(p,n)[sup 7]Be neutron yields from laser produced ion beams for fast neutron radiography
,”
Phys. Plasmas
11
(
7
),
3404
3408
(
2004
).
5.
J.
Davis
 et al., “
Neutron production from Li(d,xn) nuclear fusion reactions in high-intensity laser-target interations
,”
Plasma Phys. Controlled Fusion
52
,
045015
(
2010
).
6.
K.
Ehrlich
, “
The development of structural materials for fusion reactors
,”
Philos. Trans. R. Soc. London
357
(
1752
),
595
623
(
1999
).
7.
S. J.
Zinkle
and
J. T.
Busby
, “
Structural materials for fission & fusion energy
,”
Mater. Today
12
(
11
),
12
19
(
2009
).
8.
D. P.
Higginson
 et al., “
Laser generated neutron source for neutron resonance spectroscopy
,”
Phys. Plasmas
17
(
10
),
100701
(
2010
).
9.
J. E.
Ebenhardt
 et al., “
Fast neutron and gamma-ray interrogation of air carfo containers
,” in
Internation Workshop on Fast Neutron Detectors
,
2006
.
10.
F. H.
Ruddy
,
R. W.
Flammang
, and
J. G.
Seidel
, “
Low-background detection of fission neutrons produced by pulsed neutron interrogation
,”
Nucl. Instrum. Methods Phys. Res. A
598
(
2
),
518
525
(
2009
).
11.
S.
Hatchett
, “
Electron, photon, and ion beams from relativistic interaction of petawatt laser pulses with solid targets
,”
Phys. Plasmas
7
,
2076
(
2000
).
12.
S. C.
Wilks
 et al., “
Energetic proton generation in ultra-intense laser–solid interactions
,”
Phys. Plasmas
8
(
2
),
542
549
(
2001
).
13.
M.
Allen
 et al., “
Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils
,”
Phys. Rev. Lett.
93
(
26
),
265004
(
2004
).
14.
G. M.
Petrov
 et al., “
The impact of contaminants on laser-driven light ion acceleration
,”
Phys. Plasmas
17
,
103111
(
2010
).
15.
K.
Harres
 et al., “
Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions
,”
Rev. Sci. Instrum.
79
(
9
),
093306
(
2008
).
16.
M.
Hegelich
 et al., “
MeV ion jets from short-pulse-laser interaction with thin foils
,”
Phys. Rev. Lett.
89
(
8
),
085002
(
2002
).
17.
J. T.
Morrison
 et al., “
Selective deuteron production using target normal sheath acceleration
,”
Phys. Plasmas
19
(
3
),
030707
(
2012
).
18.
A.
Flacco
 et al., “
Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration
,”
Phys. Rev. E
81
(
3
),
036405
(
2010
).
19.
E. W.
Gaul
 et al., “
Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier
,”
Appl. Opt.
49
(
9
),
1676
1681
(
2010
).
20.
J. T.
Morrison
 et al., “
Design of and data reduction from compact Thomson parabola spectrometers
,”
Rev. Sci. Instrum.
82
(
3
),
033506
(
2011
).
21.
M.
Borghesi
 et al., “
Electric field detection in laser-plasma interaction experiments via the proton imaging technique
,”
Phys. Plasmas
9
(
5
),
2214
2220
(
2002
).
22.
K.
Flippo
 et al., “
Ion focusing experiments using cusped hemi targets and 75 MeV protons from the high-contrast LANL trident laser
,” in
53rd Annual Meeting of the APS Division of Plasma Physics
, Salt Lake City, UT,
2011
.
23.
MCNPX, Monte Carlo Team, MCNP—A General Purpose Monte Carlo N-Particle Transport Code, version 5, LA-UR-03-1987 (Los Alamos National Laboratory,
2003
). The MCNP code can be obtained from the Radiation Safety Information Computational Center (RSICC), Oak Ridge, TN.
24.
Matiullah
,
S.
Rehman
, and
W.
Zaman
, “
Discovery of new etchants for CR-39 detector
,”
Radiat. Meas.
39
(
3
),
337
343
(
2005
).
25.
R. V.
Griffith
 et al., “
Monoenergetic neutron response of selected etch plastics for personnel neutron dosimetry
,”
Radiat. Prot. Dosim.
1
(
1
),
61
71
(
1981
).
26.
B.
Pritychenko
 et al., “
Nuclear reaction and structure data services of the National Nuclear Data Center
,”
Ann. Nucl. Energy
33
(
4
),
390
399
(
2006
).
27.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
, “
SRIM—The stopping and range of ions in matter
,”
Nucl. Instrum. Methods Phys. Res. B
268
(
11–12
),
1818
1823
(
2010
).
28.
C. L.
Lee
and
X. L.
Zhou
, “
Thick target neutron yields for the 7Li(p,n)7Be reaction near threshold
,”
Nucl. Instrum. Methods Phys. Res. B
152
(
1
),
1
11
(
1999
).
29.
R. A.
Snavely
 et al., “
Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids
,”
Phys. Rev. Lett.
85
(
14
),
2945
2948
(
2000
).
30.
R.
Kodama
 et al., “
Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition
,”
Nature
412
(
6849
),
798
802
(
2001
).
31.
N. V.
Didenko
 et al., “
Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses
,”
Opt. Express
16
(
5
),
3178
3190
(
2008
).
32.
B.
Fryxell
 et al., “
FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes
,”
Astrophys. J., Suppl. Ser.
131
(
1
),
273
(
2000
).
33.
R. C.
Shah
 et al., “
High-temporal contrast using low-gain optical parametric amplification
,”
Opt. Lett.
34
(
15
),
2273
2275
(
2009
).
You do not currently have access to this content.