A free-electron laser (FEL) scheme, which employs the whistler wave as a slow electromagnetic wave wiggler, was studied theoretically. Subjected to the transverse fields of whistler wave wiggler, the beam electrons are the source of the energy needed to produce electromagnetic radiation. The strength and the period of the wiggler field depend on the parameters of the magnetoplasma medium. This configuration has a higher tunability by controlling the plasma density, on top of the γ-tunability of the conventional FELs. The theory of linear gain and electron trajectories was presented and four groups (I, II, III, and IV) of electron orbits were found in the presence of an axial guide magnetic field. Using perturbation analysis, it is found that these groups of orbits were stable except small regions of group I and IV orbits. The function Φ which determines the rate of change of axial velocity with beam energy was also derived. In the case in which Φ<0 represents a negative-mass regime in which the axial velocity accelerates as the electrons lose energy. Numerical solutions showed that by increasing the cyclotron frequency, the gain for group I and III orbits increased, while a gain decrement was obtained for group II and IV orbits.

1.
G.
Lambert
,
T.
Hara
,
D.
Garzella
,
T.
Tanikawa
,
M.
Labat
,
B.
Carre
,
H.
Kitamura
,
T.
Shintake
,
M.
Bougeard
,
S.
Inoue
,
Y.
Tanaka
,
P.
Salieres
,
H.
Merdji
,
O.
Chubar
,
O.
Gobert
,
K.
Tahara
, and
M.-E.
Couprie
,
Nature Phys.
4
,
296
(
2008
).
2.
H. P.
Freund
,
P. G.
O'Shea
, and
S. G.
Biedron
,
Phys. Rev. Lett.
94
,
074802
(
2005
).
3.
H. P.
Freund
and
T. M.
Antonsen
,
Principles of Free-Electron Lasers
(
Chapman and Hall
,
London
,
1996
).
4.
K. R.
Chen
and
J. M.
Dawson
,
Phys. Rev. A
45
,
4077
(
1992
).
5.
A.
Goldring
and
A. L.
Friedland
,
Phys. Rev. A
32
,
2879
(
1985
).
6.
H. P.
Freund
,
R. A.
Kehs
, and
V. L.
Granatstein
,
IEEE J. Quantum Electron.
QE-21
,
1080
(
1985
).
7.
I. D.
Kaganovich
,
E. A.
Startsev
,
A. B.
Sefkow
, and
R. C.
Davidson
,
Phys. Rev. Lett.
99
,
235002
(
2007
).
8.
I.
Blumenfeld
,
C. E.
Clayton
,
F.-J.
Decker
,
M. J.
Hogan
,
C.
Huang
,
R.
Ischebeck
,
R.
Iverson
,
C.
Joshi
,
T.
Katsouleas
,
N.
Kirby
,
W.
Lu
,
K. A.
Marsh
,
W. B.
Mori
,
P.
Muggli
,
E.
Oz
,
R. H.
Siemann
,
D.
Walz
, and
M.
Zhou
,
Nature (London)
445
,
741
(
2007
).
9.
R.
Govil
,
W. P.
Leemans
,
E.
Yu. Backhaus
, and
J. S.
Wurtele
,
Phys. Rev. Lett.
83
,
3202
(
1999
).
10.
11.
A. J.
Kemp
,
Y.
Sentoku
,
V.
Sentinkov
, and
S. C.
Wilks
,
Phys. Rev. Lett.
97
,
235001
(
2006
).
12.
V.
Petrillo
and
C.
Maroli
,
Phys. Rev. E
62
,
8612
(
2000
).
13.
D. H.
Whittum
,
S.
Hiramatsu
, and
J. S.
Kim
,
IEEE Trans. Plasma Sci.
21
,
170
(
1993
).
14.
H. S.
Uhm
and
R.
Davidson
,
IEEE Trans. Plasma Sci.
33
,
1395
(
2005
).
15.
Y.
Carmel
,
K.
Minami
,
R. A.
Kehs
,
W. W.
Destler
,
V. L.
Granatstein
,
D.
Abe
, and
W. L.
Lou
,
Phys. Rev. Lett.
62
,
2389
(
1989
).
16.
P.
Weng-Bing
and
C.
Ya-Shen
,
Int. J. Electron.
65
,
551
(
1988
).
17.
A.
Serbeto
and
M. V.
Alves
,
IEEE Trans. Plasma Sci.
21
,
243
(
1993
).
18.
Y.
Seo
and
E. H.
Choi
,
IEEE Trans. Plasma Sci.
25
,
360
(
1997
).
19.
C.
Joshi
,
T.
Katsoulens
,
J. M.
Dawson
,
Y. T.
Yan
, and
J. M.
Slater
,
IEEE J. Quantum Electron.
23
,
1571
(
1987
).
20.
S. C.
Sharma
and
V. K.
Tripathi
,
IEEE Trans. Plasma Sci.
23
,
792
(
1995
).
21.
A.
Sharma
and
V. K.
Triphati
,
Phys. Fluids.
31
,
3375
(
1988
).
22.
D. K.
Kalluri
,
J. Appl. Phys.
79
(
9
),
6770
(
1996
).
23.
H.
Mehdian
,
S.
Jafari
, and
A.
Hasanbeigi
,
Plasma Phys. Controlled Fusion
52
,
055005
(
2010
).
24.
H.
Mehdian
,
S.
Jafari
, and
A.
Hasanbeigi
,
IEEE Trans. Plasma Sci.
39
,
761
(
2011
).
25.
I. D.
Kaganovich
,
E. A.
Startsev
, and
R. C.
Davidson
,
Phys. Plasmas
11
,
3546
(
2004
).
26.
H. G.
Booker
,
Cold Plasma Waves
, (
Kluwer
,
Hingham, MA
,
1984
).
27.
M.
Esmaeilzadeh
,
H.
Mehdian
, and
J. E.
Willett
,
Phys. Rev. E
65
,
016501
(
2001
).
28.
M.
Esmaeilzadeh
and
J. E.
Willett
,
Phys. Plasmas
14
,
033102
(
2007
).
You do not currently have access to this content.