We report inverse bremsstrahlung (IB) heating rates in the eikonal approximation (EA). The present analysis is performed using the plasma-screened Rogers and Debye potentials for Xe clusters with two different charge states (6 and 10). We compare the eikonal results with the first Born approximation (FBA) and classical-simulation (CL-sim) (Moll et al., Phys. Plasmas 19, 033303 (2012)) calculations for clusters in infrared light. Calculations have been performed for the field strength of 2.6 × 108 V/cm. We find that compared to the FBA and CL-sim methods, the IB heating rate in the EA is less sensitive to the choice of the two potentials considered here. The present EA calculation shows that the influence of the inner structure of atomic ion on the heating rate is more prominent for the smaller ion charge (Xe6+). In the case of low laser field approximation based on the elastic transport cross sections, it is seen that in contrast to the FBA and classical methods, the heating rate predicted by the EA does not deviate much all over the range of mean kinetic energy of electrons (20–500 eV) considered here for both the charge states of xenon (Xe6+ and Xe10+). Furthermore, for the Rogers potential, EA is found to be in closer agreement with the classical method than the FBA. We also compare the results of the IB heating rate using the present and low-field approximation approaches to the above three methods and observe that the magnitudes of the IB heating rate calculated in the low field approximation are, in general, higher than the corresponding values predicted by the present approach for both the electron-ion potentials.

1.
H.
Wabnitz
,
L.
Bittner
,
A. R. B.
de Castro
,
R.
Döhrmann
,
P.
Gürtler
,
T.
Laarmann
,
W.
Laasch
,
J.
Schulz
,
A.
Swiderski
,
K.
von Haeften
,
T.
Möller
,
B.
Faatz
,
A.
Fateev
,
J.
Feldhaus
,
C.
Gerth
,
U.
Hahn
,
E.
Saldin
,
E.
Schneidmiller
,
K.
Sytchev
,
K.
Tiedtke
,
R.
Treusch
, and
M.
Yurkovk
,
Nature (London)
420
,
482
(
2002
).
2.
T.
Laarmann
,
M.
Rusek
,
H.
Wabnitz
,
J.
Schulz
,
A. R. B.
de Castro
,
P.
Gürtler
,
W.
Laasch
, and
T.
Möller
,
Phys. Rev. Lett.
95
,
063402
(
2005
).
3.
U.
Saalmann
,
Ch.
Siedschlag
, and
J. M.
Rost
,
J. Phys. B: At. Mol. Opt. Phys.
39
,
R39
(
2006
).
4.
C.
Deiss
,
N.
Rohringer
,
J.
Burgdörfer
,
E.
Lamour
,
C.
Prigent
,
J. P.
Rozet
, and
D.
Vernhet
,
Phys. Rev. Lett.
96
,
013203
(
2006
).
5.
J.
Jha
and
M.
Krishnamurthy
,
J. Phys. B
41
,
041002
(
2008
).
6.
H.
Thomas
,
C.
Bostedt
,
M.
Hoener
,
E.
Eremina
,
H.
Wabnitz
,
T.
Laarmann
,
E.
Plönjes
,
R.
Treusch
,
A. R. B.
de Castro
, and
T.
Möller
,
J. Phys. B
42
,
134018
(
2009
).
7.
N. M.
Kroll
and
K. M.
Watson
,
Phys. Rev. A
8
,
804
(
1973
).
8.
V. P.
Krainov
and
M. B.
Smirnov
,
Phys. Rep.
370
,
237
(
2002
).
9.
R.
Santra
and
C. H.
Greene
,
Phys. Rev. Lett.
91
,
233401
(
2003
).
10.
Z. B.
Walters
,
R.
Santra
, and
C. H.
Greene
,
Phys. Rev. A
74
,
043204
(
2006
).
11.
P.
Mulser
and
R.
Schneider
,
J. Phys. A: Math. Theor.
42
,
214058
(
2009
).
12.
F.
Wang
,
E.
Weckert
, and
B.
Ziaja
,
J. Plasma Phys.
75
,
289
(
2009
).
13.
T.
Fennel
,
K.-H.
Meiwes-Broer
,
J.
Tiggesbäumker
,
P.-G.
Reinhard
,
P. M.
Dinh
, and
E.
Suraud
,
Rev. Mod. Phys.
82
,
1793
(
2010
).
14.
M.
Moll
,
P.
Hilse
,
M.
Schlanges
,
Th.
Bornath
, and
V. P.
Krainov
,
J. Phys. B
43
,
135103
(
2010
).
15.
M.
Arbeiter
and
T.
Fennel
,
New J. Phys.
13
,
053022
(
2011
).
16.
M.
Moll
,
Th.
Bornath
,
M.
Schlanges
, and
V. P.
Krainov
,
Phys. Plasmas
19
,
033303
(
2012
).
17.
G. M.
Fraiman
,
V. A.
Mironov
, and
A. A.
Balakin
,
J. Exp. Theor. Phys.
88
,
254
(
1999
).
18.
A.
Bratnov
,
W.
Rozmus
,
R.
Sydora
,
C. E.
Capjack
,
V.
Yu. Bychenkov
, and
V. T.
Tikhonchuk
,
Phys. Plasmas
10
,
3385
(
2003
).
19.
P.
Hilse
,
M.
Schlanges
,
Th.
Bornath
, and
D.
Kremp
,
Phys. Rev. E
71
,
056408
(
2005
).
20.
S.
Rand
,
Phys. Rev. B
136
,
231
(
1964
).
21.
F. V.
Bunkin
and
M. V.
Fedorov
,
Zh. Eksp. Teor. Fiz.
49
,
1215
(
1965
).
22.
D.
Kremp
,
Th.
Bornath
,
M.
Bonitz
, and
M.
Schlanges
,
Phys. Rev. E
60
,
4725
(
1999
).
23.
V. P.
Krainov
,
J. Exp. Theor. Phys.
92
,
960
(
2001
).
24.
Th.
Bornath
,
M.
Schlanges
,
P.
Hilse
, and
D.
Kremp
,
Phys. Rev. E
64
,
026414
(
2001
).
25.
R. J.
Glauber
, in
Lectures in the Theoretical Physics
, edited by
W. E.
Brittin
 et al. (
Interscience
,
New York
,
1959
), p.
315
, Vol.
I
.
26.
A. C.
Roy
and
N. C.
Sil
,
J. Phys. B
11
,
2729
(
1978
).
27.
F. J.
Rogers
,
Phys. Rev. A
23
,
1008
(
1981
).
28.
E.
Gerjuoy
and
B. K.
Thomas
,
Rep. Prog. Phys.
37
,
1345
(
1974
).
29.
R.
Dey
and
A. C.
Roy
,
Phys. Lett. A
332
,
60
(
2004
).
30.
R.
Dey
and
A. C.
Roy
,
Phys. Lett. A
353
,
341
(
2006
).
31.
R.
Dey
,
A. C.
Roy
, and
C.
Dal Cappello
,
Nucl. Instrum. Methods Phys. Res. B
266
,
242
(
2008
).
32.
R.
Dey
and
A. C.
Roy
,
Nucl. Instrum. Methods Phys. Res. B
267
,
2357
(
2009
).
33.
M.
Schulz
,
A. C.
Laforge
,
K. N.
Egodapitiya
,
J. S.
Alexander
,
A.
Hasan
,
M. F.
Ciappina
,
A. C.
Roy
,
R.
Dey
,
A.
Samolov
, and
A. L.
Godunov
,
Phys. Rev. A
81
,
052705
(
2010
).
34.
R.
Dey
and
A. C.
Roy
,
Nucl. Instrum. Methods Phys. Res. B
269
,
364
(
2011
).
35.
R.
Dey
,
A. C.
Roy
, and
C.
Dal Cappello
,
Nucl. Instrum. Methods Phys. Res. B
271
,
82
(
2012
).
36.
R.
Dey
and
A. C.
Roy
,
Eur. Phys. J. D
66
,
114
(
2012
).
37.
G.
Ferrante
,
C.
Leone
, and
L.
Lo Cascio
,
J. Phys. B
12
,
2319
(
1979
).
38.
I. Ya.
Berson
,
Zh. Eksp. Teor. Fiz.
80
,
1727
(
1981
).
39.
M. V.
Fedorov
,
Atomic and Free Electrons in a Strong Light Field
(
World Scientific
,
Singapore
,
1997
).
You do not currently have access to this content.