A comparative study of electron kinetics between single-frequency (SF) microplasmas and their equivalent dual-frequency (DF) microplasmas with matching effective frequencies in atmospheric-pressure helium discharges was performed using particle-in-cell simulation with a Monte Carlo collision. The effective-frequency concept helps in analyzing DF microplasmas in a fashion similar to SF microplasmas with effective parameters. In this study, the plasma characteristics such as the plasma potential, density, and electron energy probability functions of the SF microplasma and its DF counterpart were almost the same. However, the oscillating sheath edge was pushed further into the electrode for a substantial fraction of the time and the sheath width decreased in DF microplasmas. As a result, the transportation of the energetic electrons (ε > 4 eV) usable for tailoring the surface chemistry in atmospheric microplasmas is enhanced in DF microplasmas as compared to SF microplasmas.

1.
F.
Iza
,
J. K.
Lee
, and
M. G.
Kong
,
Phys. Rev. Lett.
99
,
075004
(
2007
).
2.
S. K.
Nam
and
J. P.
Verboncoeur
,
Appl. Phys. Lett.
93
,
151504
(
2008
).
3.
G.
Fridman
,
G.
Friedman
,
A.
Gutsol
,
A. B.
Shekhter
,
V. N.
Vasilets
, and
A.
Fridman
,
Plasma Processes Polym.
5
,
503
(
2008
).
4.
T.
Ito
,
T.
Kanazawa
, and
S.
Hamaguchi
,
Phys. Rev. Lett.
107
,
065002
(
2011
).
5.
J. Y.
Kim
,
S.
Kim
,
Y.
Wei
, and
J.
Li
,
Appl. Phys. Lett.
96
,
203701
(
2010
).
6.
S. J.
Kim
,
T. H.
Chung
,
S. H.
Bae
, and
S. H.
Leem
,
Appl. Phys. Lett.
94
,
141502
(
2009
).
7.
G. J.
Kim
,
W.
Kim
,
K. T.
Kim
, and
J. K.
Lee
,
Appl. Phys. Lett.
96
,
021502
(
2010
).
8.
S.
Ono
,
S.
Teii
,
Y.
Suzuki
, and
T.
Suganuma
,
Thin Solid Films
518
,
981
(
2009
).
9.
H. C.
Kwon
,
I. H.
Won
, and
J. K.
Lee
,
Appl. Phys. Lett.
100
,
183702
(
2012
).
10.
Y. T.
Zhang
and
W. L.
Shang
,
Phys. Plasmas
18
,
110701
(
2011
).
11.
D. W.
Liu
,
F.
Iza
, and
M. G.
Kong
,
Appl. Phys. Lett.
93
,
261503
(
2008
).
12.
D. B.
Kim
,
S. Y.
Moon
,
H.
Jung
,
B.
Gweon
, and
W.
Choe
,
Phys. Plasmas
17
,
053508
(
2010
).
13.
H. C.
Kim
and
J. K.
Lee
,
Phys. Rev. Lett.
93
,
085003
(
2004
).
14.
V. A.
Godyak
,
R. B.
Piejak
, and
B. M.
Alexandrovich
,
Phys. Rev. Lett.
68
,
40
(
1992
).
15.
T.
Kitajima
,
Y.
Takeo
,
Z.
Lj. Petrovic
, and
T.
Makabe
,
Appl. Phys. Lett.
77
,
489
(
2000
).
16.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
,
New York
,
2005
).
17.
Z.-H.
Bi
,
Y.-X.
Liu
,
W.
Jiang
,
X.
Xu
, and
Y.-N.
Wang
,
Curr. Appl. Phys.
11
,
S2
(
2011
).
18.
S. K.
Ahn
,
S. J.
You
, and
H. Y.
Chang
,
Appl. Phys. Lett.
89
,
161506
(
2006
).
19.
J. P.
Verboncoeur
,
M. V.
Alves
,
V.
Vahedi
, and
C. K.
Birdsall
,
J. Comput. Phys.
104
,
321
(
1993
).
20.
H. C.
Kim
,
J. K.
Lee
, and
J. W.
Shon
,
Phys. Plasmas
10
,
4545
(
2003
).
21.
H. C.
Kim
and
J. K.
Lee
,
J. Vac. Sci. Technol. A
23
,
651
(
2005
).
22.
H. C.
Kwon
,
A. U.
Rehman
,
I. H.
Won
,
W. T.
Park
, and
J. K.
Lee
,
J. Appl. Phys.
111
,
023305
(
2012
).
23.
T. H.
Chung
,
Phys. Plasmas
12
,
104503
(
2005
).
24.
J. K.
Park
,
S. H.
Nam
,
H. C.
Kwon
,
A. A. H.
Mohamed
,
J. K.
Lee
, and
G. C.
Kim
,
Int. Endod. J.
44
,
170
(
2011
).
25.
A.
Soloshenko
,
V. V.
Tsiolko
,
V. A.
Khomich
,
V.
Yu. Bazhenov
,
A. V.
Ryabtsev
,
A. I.
Schedrin
, and
I. L.
Mikhno
,
IEEE Trans. Plasma Sci.
30
,
1440
(
2002
).
26.
S.
Tang
,
O. J.
Kwon
,
N.
Lu
, and
H. S.
Choi
,
Surf. Coat. Tech.
195
,
298
(
2005
).
27.
S. J.
You
,
H. C.
Kim
,
C. W.
Chung
,
H. Y.
Chang
, and
J. K.
Lee
,
J. Appl. Phys.
94
,
7422
(
2003
).
You do not currently have access to this content.