Within the framework of the shock-ignition (SI) scheme, ignition conditions are reached following the separation of the compression and heating phases. First, the shell is compressed at a sub-ignition implosion velocity; then an intense laser spike is launched at the end of the main drive, leading to the propagation of a strong shock through the precompressed fuel. The minimal laser energy required for ignition of scaled deuterium–tritium (DT) targets is assessed by calculations. A semi-empiric model describing the ignitor shock generation and propagation in the fuel assembly is defined. The minimal power needed in the laser spike pulse to achieve ignition is derived from the hydrodynamic model. Optimal conditions for ignition of scaled targets are explored in terms of laser intensity, shell-implosion velocity, and target scale range for the SI process. Curves of minimal laser requirements for ignition are plotted in the energy–power diagram. The most economic and reliable conditions for ignition of a millimeter DT target are observed in the 240- to 320-km/s implosion velocity range and for the peak laser intensity ranging from ∼2 × 1015 W/cm2 up to 5 × 1015 W/cm2. These optimal conditions correspond to shock-ignited targets for a laser energy of ∼250 kJ and a laser power of 100 to 200 TW. Large, self-ignited targets are particularly attractive by offering ignition at a lower implosion velocity and a reduced laser intensity than for conventional ignition. The SI scheme allows for the compression and heating phases of the high power laser energy research facility target to be performed at a peak laser intensity below 1016 W/cm2. A better control of parametric and hydrodynamic instabilities within the SI scheme sets it as an optimal and reliable approach to attain ignition of large targets.

1.
S.
Atzeni
and
J.
Meyer-ter-Vehn
,
The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter
, International Series of Monographs on Physics (
Clarendon
,
Oxford
,
2004
).
2.
J. D.
Lindl
,
Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive
(
Springer-Verlag
,
New York
,
1998
).
3.
V. A.
Shcherbakov
,
Sov. J. Plasma Phys.
9
,
240
(
1983
).
4.
R.
Betti
,
C. D.
Zhou
,
K. S.
Anderson
,
L. J.
Perkins
,
W.
Theobald
, and
A. A.
Solodov
,
Phys. Rev. Lett.
98
,
155001
(
2007
).
5.
M.
Lafon
,
X.
Ribeyre
, and
G.
Schurtz
,
Phys. Plasmas
17
,
052704
(
2010
).
6.
G.
Schurtz
,
X.
Ribeyre
, and
M.
Lafon
,
J. Phys.: Conf. Ser.
244
,
022013
(
2010
).
7.
S.
Atzeni
,
A.
Schiavi
, and
C.
Bellei
,
Phys. Plasmas
14
,
052702
(
2007
).
8.
S.
Atzeni
,
A.
Schiavi
,
J. J.
Honrubia
,
X.
Ribeyre
,
G.
Schurtz
,
Ph.
Nicolaï
,
M.
Olazabal–Loumé
,
C.
Bellei
,
R. G.
Evans
, and
J. R.
Davies
,
Phys. Plasmas
15
,
056311
(
2008
).
9.
X.
Ribeyre
,
Ph.
Nicolaï
,
G.
Schurtz
,
M.
Olazabal-Loumé
,
J.
Briel
,
P. H.
Maire
,
J.
Feugeas
,
L.
Hallo
, and
V. T.
Tikhonchuk
,
Plasma Phys. Controlled Fusion
50
,
025007
(
2008
).
10.
X.
Ribeyre
,
G.
Schurtz
,
M.
Lafon
,
S.
Galera
, and
S.
Weber
,
Plasma Phys. Controlled Fusion
51
,
015013
(
2009
).
11.
P.-H.
Maire
,
R.
Abgrall
,
J.
Breil
, and
J.
Ovadia
,
SIAM J. Sci. Comput. (USA)
29
,
1781
(
2007
).
12.
C. D.
Zhou
and
R.
Betti
,
Phys. Plasmas
14
,
072703
(
2007
).
13.
R.
Betti
and
C.
Zhou
,
Phys. Plasmas
12
,
110702
(
2005
).
14.
A.
Kemp
,
J.
Meyer-ter-Vehn
, and
S.
Atzeni
,
Phys. Rev. Lett.
86
,
3336
(
2001
).
15.
X.
Ribeyre
,
V. T.
Tikhonchuk
,
J.
Breil
,
M.
Lafon
, and
E.
Le Bel
,
Phys. Plasmas
18
,
102702
(
2011
).
16.
R.
Nora
and
R.
Betti
,
Phys. Plasmas
18
,
082710
(
2011
).
17.
Von G.
Guderley
,
Luftfahrtforschung
19
,
302
(
1942
).
18.
S.
Atzeni
,
Plasma Phys. Controlled Fusion
42
,
B143
155
(
2000
).
19.
A. R.
Bell
and
M.
Tzoufras
,
Plasma Phys. Controlled Fusion
53
,
045010
(
2011
).
20.
O.
Klimo
,
S.
Weber
,
V. T.
Tikhonchuk
, and
J.
Limpouch
,
Plasma Phys. Controlled Fusion
52
,
055013
(
2010
).
21.
O.
Klimo
,
V. T.
Tikhonchuk
,
X.
Ribeyre
,
G.
Schurtz
,
C.
Riconda
,
S.
Weber
, and
J.
Limpouch
,
Phys. Plasmas
18
,
082709
(
2011
).
22.
R.
Betti
,
W.
Theobald
,
C. D.
Zhou
,
K. S.
Anderson
,
P. W.
McKenty
,
S.
Skupsky
,
D.
Shvarts
,
V. N.
Goncharov
,
J. A.
Delettrez
,
P. B.
Radha
,
T. C.
Sangster
,
C.
Stoeckl
, and
D. D.
Meyerhofer
,
J. Phys.: Conf. Ser.
112
,
022024
(
2008
).
23.
M.
Olazabal-Loumé
,
J.
Breil
,
L.
Hallo
,
X.
Ribeyre
, and
J.
Sanz
,
Plasma Phys. Controlled Fusion
53
,
015015
(
2011
).
24.
E. I.
Moses
,
J. Phys.: Conf. Ser.
112
,
012003
(
2008
).
25.
V. A.
Smalyuk
,
R.
Betti
,
J. A.
Delettrez
,
V.
Yu. Glebov
,
D. D.
Meyerhofer
,
P. B.
Radha
,
S. P.
Regan
,
T. C.
Sangster
,
J.
Sanz
,
W.
Seka
,
C.
Stoeckl
,
B.
Yaakobi
,
J. A.
Frenje
,
C. K.
Li
,
R. D.
Petrasso
, and
F. H.
Séguin
,
Phys. Rev. Lett.
104
,
165002
(
2010
).
26.
T. R.
Boehly
,
D. L.
Brown
,
R. S.
Craxton
,
R. L.
Keck
,
J. P.
Knauer
,
J. H.
Kelly
,
T. J.
Kessler
,
S. A.
Kumpan
,
S. J.
Loucks
,
S. A.
Letzring
,
F. J.
Marshall
,
R. L.
McCrory
,
S. F. B.
Morse
,
W.
Seka
,
J. M.
Soures
, and
C. P.
Verdon
,
Opt. Commun.
133
,
495
(
1997
).
27.
W.
Theobald
,
R.
Nora
,
M.
Lafon
,
A.
Casner
,
X.
Ribeyre
,
K. S.
Anderson
,
R.
Betti
,
J. A.
Delettrez
,
J. A.
Frenje
,
V.
Yu. Glebov
,
O. V.
Gotchev
,
M.
Hohenberger
,
S. X.
Hu
,
F. J.
Marshall
,
D. D.
Meyerhofer
,
T. C.
Sangster
,
G.
Schurtz
,
W.
Seka
,
V. A.
Smalyuk
,
C.
Stoeckl
, and
B.
Yaakobi
,
Phys. Plasmas
19
,
102706
(
2012
).
You do not currently have access to this content.