Basic linear eigenmode spectra for electrostatic Langmuir waves and drift-kinetic slab ion temperature gradient modes are examined in a series of scenarios. Collisions are modeled via a Lenard-Bernstein collision operator which fundamentally alters the linear spectrum even for infinitesimal collisionality [Ng et al., Phys. Rev. Lett. 83, 1974 (1999)]. A comparison between different discretization schemes reveals that a Hermite representation is superior for accurately resolving the spectra compared to a finite differences scheme using an equidistant velocity grid. Additionally, it is shown analytically that any even power of velocity space hyperdiffusion also produces a Case-Van Kampen spectrum which, in the limit of zero hyperdiffusivity, matches the collisionless Landau solutions.

1.
L.
Landau
,
J. Phys. USSR
10
,
25
(
1946
).
2.
J. H.
Malmberg
and
C. B.
Wharton
,
Phys. Rev. Lett.
13
,
184
(
1964
).
3.
N. G.
Van Kampen
,
Physica
21
,
949
(
1955
).
4.
A.
Lenard
and
I. B.
Bernstein
,
Phys. Rev.
112
,
1456
(
1958
).
5.
C. S.
Ng
,
A.
Bhattacharjee
, and
F.
Skiff
,
Phys. Rev. Lett.
83
,
1974
(
1999
).
6.
R. W.
Short
and
A.
Simon
,
Phys. Plasmas
9
,
3245
(
2002
).
7.
F.
Jenko
,
W.
Dorland
,
M.
Kotschenreuther
, and
B. N.
Rogers
,
Phys. Plasmas
7
,
1904
(
2000
).
8.
M.
Kammerer
,
F.
Merz
, and
F.
Jenko
,
Phys. Plasmas
15
,
052102
(
2008
).
9.
E. A.
Belli
and
J.
Candy
,
Phys. Plasmas
17
,
112314
(
2010
).
10.
D. R.
Hatch
,
P. W.
Terry
,
F.
Jenko
,
F.
Merz
,
M. J.
Plueschel
,
W. M.
Nevins
, and
E.
Wang
,
Phys. Plasmas
18
,
055706
(
2011
).
11.
F.
Merz
,
C.
Kowitz
,
E.
Romero
,
J. E.
Roman
, and
F.
Jenko
,
Comput. Phys. Commun.
183
,
922
(
2012
).
12.
T.
Dannert
and
F.
Jenko
,
Phys. Plasmas
12
,
072309
(
2005
).
13.
G. M.
Staebler
,
J. E.
Kinsey
, and
R. E.
Waltz
,
Phys. Plasmas
12
,
102508
(
2005
).
14.
C.
Bourdelle
 et al,
Phys. Plasmas
14
,
112501
(
2007
).
15.
F.
Merz
and
F.
Jenko
,
Phys. Rev. Lett.
100
,
035005
(
2008
).
16.
F.
Merz
and
F.
Jenko
,
Nucl. Fusion
50
,
054005
(
2010
).
17.
D. R.
Hatch
,
P. W.
Terry
,
F.
Jenko
,
F.
Merz
, and
W. M.
Nevins
,
Phys. Rev. Lett.
106
,
115003
(
2011
).
18.
P. W.
Terry
,
D. A.
Baver
, and
S.
Gupta
,
Phys. Plasmas
13
,
022307
(
2006
).
19.
B.
Teaca
,
A. B.
Navarro
,
F.
Jenko
,
S.
Brunner
, and
L.
Villard
,
Phys. Rev. Lett.
109
,
235003
(
2012
).
20.
Methods of Modern Mathematical Physics, IV: Analysis of Operators
, edited by
M.
Reed
and
B.
Simon
(
Academic
,
1978
).
21.
B.
Wu
,
J. Phys. A: Math. Gen.
32
,
5835
(
1999
).
22.
Theoretical Methods in Plasma Physics
, edited by
N. G.
Van Kampen
and
B. U.
Felderhof
(
North-Holland
,
Amsterdam
,
1967
).
23.
K. M.
Case
,
Ann. Phys. (N.Y.)
7
,
349
(
1959
).
25.
B.
Coppi
,
M. N.
Rosenbluth
, and
R. Z.
Sagdeev
,
Phys. Fluids
10
,
582
(
1967
).
26.
A. M.
Dimits
,
G.
Bateman
,
M. A.
Beer
,
B. I.
Cohen
,
W.
Dorland
,
G. W.
Hammett
,
C.
Kim
,
J. E.
Kinsey
,
M.
Kotschenreuther
,
A. H.
Kritz
,
L. L.
Lao
,
J.
Mandrekas
,
W. M.
Nevins
,
S. E.
Parker
,
A. J.
Redd
,
D. E.
Shumaker
,
R.
Sydora
, and
J.
Weiland
,
Phys. Plasmas
7
,
969
(
2000
).
27.
The Plasma Dispersion Function
, edited by
B. D.
Fried
and
S. D.
Conte
(
Academic
,
London
,
1961
).
28.
J. P.
Holloway
and
J. J.
Dorning
,
Phys. Rev. A
44
,
3856
3868
(
1991
).
29.
Formulas and Theorems for the Special Functions of Mathematical Physics
, edited by
W.
Magnus
,
F.
Oberhettinger
,
R. P.
Soni
(
Springer
,
Berlin/Heidelberg/New York
,
1966
).
30.
F.
Skiff
,
S.
De Souza-Machado
,
W. A.
Noonan
,
A.
Case
, and
T. N.
Good
,
Phys. Rev. Lett.
81
,
5820
(
1998
).
31.
J.
Parker
, private communication (
2012
).
32.
M. J.
Pueschel
,
T.
Dannert
, and
F.
Jenko
,
Comput. Phys. Commun.
181
,
1428
1437
(
2010
).
33.
M.
Flory
,
R. C.
Helling
and
C.
Sluka
, arXiv:1201.2714v2 [math-ph].
You do not currently have access to this content.