Distinctive discharge formation in atmospheric Ar and He plasmas was observed in the microwave frequency band using coaxial transmission line resonators. Ar plasmas formed a plasma plume whereas He formed only confined plasmas. As the frequency increased from 0.9 GHz to 2.45 GHz, the Ar plasma exhibited contraction and filamentation, and the He plasmas were constricted. Various powers and gas flow rates were applied to identify the effect of the electric field and gas flow rate on plasma plume formation. The He plasmas were more strongly affected by the electric field than the Ar plasmas. The breakdown and sustain powers yielded opposite results from those for low-frequency plasmas (∼kHz). The phenomena could be explained by a change in the dominant ionization process with increasing frequency. Penning ionization and the contribution of secondary electrons in sheath region reduced as the frequency increased, leading to less efficient ionization of He because its ionization and excitation energies are higher than those of Ar. The emission spectra showed an increase in the NO and N2 second positive band in both the Ar and He plasmas with increasing frequency whereas the hydroxyl radical and atomic O peaks did not increase with increasing frequency but were highest at particular frequencies. Further, the frequency effect of properties such as the plasma impedance, electron density, and device efficiency were presented. The study is expected to be helpful for determining the optimal conditions of plasma systems for biomedical applications.

1.
M.
Moisan
,
C. M.
Ferreira
,
Y.
Hajlaoui
,
D.
Henry
,
J.
Hubert
,
R.
Pantel
,
A.
Ricard
, and
Z.
Zakrzewski
,
Rev. Phys. Appl.
17
,
707
(
1982
).
2.
F.
Iza
,
G. J.
Kim
,
S. M.
Lee
,
J. K.
Lee
,
J. L.
Walsh
,
Y. T.
Zhang
, and
M. G.
Kong
,
Plasma Processes Polym.
5
,
322
(
2008
).
3.
J.
Choi
,
F.
Iza
,
H. J.
Do
,
J. K.
Lee
, and
M. H.
Cho
,
Plasma Sources Sci. Technol.
18
,
025029
(
2009
).
4.
Y. S.
Seo
,
H.
Wk. Lee
,
H. C.
Kwon
,
J.
Choi
,
S. M.
Lee
,
K. C.
Woo
,
K. T.
Kim
, and
J. K.
Lee
,
Thin Solid Films
519
,
7071
(
2011
).
5.
J.
Choi
,
A. -A. H.
Mohamed
,
S. K.
Kang
,
K. C.
Woo
,
K. T.
Kim
, and
J. K.
Lee
,
Plasma Processes Polym.
7
,
258
(
2010
).
6.
E.
Castanos-Martinez
,
M.
Moisan
, and
Y.
Kabouzi
,
J. Phys. D: Appl. Phys.
42
,
012003
(
2009
).
7.
Y.
Kabouzi
,
M. D.
Calzada
,
M.
Moisan
,
K. C.
Tran
, and
C.
Trassy
,
J. Appl. Phys.
91
,
1008
(
2002
).
8.
H. C.
Kwon
,
I. H.
Won
, and
J. K.
Lee
,
Appl. Phys. Lett.
100
,
183702
(
2012
).
9.
J. J.
Shi
,
D. W.
Liu
, and
M. G.
Kong
,
Appl. Phys. Lett.
89
,
081502
(
2006
).
10.
J. J.
Shi
and
M. G.
Kong
,
Appl. Phys. Lett.
90
,
101502
(
2007
).
11.
Q.
Li
,
X. M.
Zhu
,
J. T.
Li
, and
Y. K.
Pu
,
J. Appl. Phys.
107
,
043304
(
2010
).
12.
Q.
Li
,
Y. K.
Pu
,
M. A.
Lieberman
, and
D. J.
Economou
,
Phys. Rev. E
83
,
046405
(
2011
).
13.
Y.
Skiyama
and
D. B.
Graves
,
Plasma Sources Sci. Technol.
18
,
025022
(
2009
).
14.
J. L.
Walsh
,
F.
Iza
,
N. B.
Janson
,
V. J.
Law
, and
M. G.
Kong
J. Phys. D: Appl. Phys.
43
,
075201
(
2010
).
15.
D.
Breden
,
K.
Miki
, and
L. L.
Raja
,
Appl. Phys. Lett.
99
,
111501
(
2011
).
16.
Y.
Sakiyama
,
N.
Knake
,
D.
Schröder
,
J.
Winter
,
V.
Schulz-von der Gathen
, and
D. B.
Graves
,
Appl. Phys. Lett.
97
,
151501
(
2010
).
17.
M.
Yousfi
,
O.
Eichwald
,
N.
Merbani
, and
N.
Jomaa
,
Plasma Sources Sci. Technol.
21
,
045003
(
2012
).
18.
B. L.
Sands
,
S. K.
Huang
,
J. W.
Speltz
,
M. A.
Niekamp
, and
B. N.
Ganguly
,
J. Appl. Phys.
113
,
153303
(
2013
).
19.
F.
Iza
and
J.
Hopwood
,
Plasma Sources Sci. Technol.
14
,
397
(
2005
).
20.
K.
McKay
,
F.
Iza
, and
M. G.
Kong
,
Eur. Phys. J. D
60
,
497
(
2010
).
21.
S. M.
Lee
,
Y. J.
Hong
,
Y. S.
Seo
,
F.
Iza
,
G. C.
Kim
, and
J. K.
Lee
,
Comput. Phys. Commun.
180
,
636
(
2009
).
22.
S. K.
Kang
,
Y. S.
Seo
,
H.
Wk. Lee
,
A.
Rehman
,
G. C.
Kim
, and
J. K.
Lee
,
J. Phys. D: Appl. Phys.
44
,
435201
(
2011
).
23.
E.
Castanos-Martinez
,
Y.
Kabouzi
,
K.
Makasheva
, and
M.
Moisan
,
Phys. Rev. E
70
,
066405
(
2004
).
24.
Y. S.
Seo
,
A. -A. H.
Mohamed
,
K. C.
Woo
,
H. W.
Lee
,
J. K.
Lee
, and
K. T.
Kim
,
IEEE Trans. Plasma Sci.
38
,
2954
(
2010
).
25.
X. P.
Lu
,
Z. H.
Jiang
,
Q.
Xiong
,
Z. Y.
Tang
, and
Y.
Pan
,
Appl. Phys. Lett.
92
,
151504
(
2008
).
26.
H. W.
Lee
,
S. H.
Nam
,
A. -A. H.
Mohamed
,
G. C.
Kim
, and
J. K.
Lee
,
Plasma Processes Polym.
7
,
274
(
2010
).
27.
M. A.
Liebermann
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Material Processing
, 2nd ed. (
Wiley
,
New York
,
2005
), p.
80
.
28.
D. R.
Lide
,
2001-2002 Handbook of Chemistry and Physics
, 82nd ed. (
CRC Press
,
2001
).
29.
J.
Jonkers
,
M.
van de Sande
,
A.
Sola
,
A.
Gamero
, and
J.
van der Mullen
,
Plasma Sources Sci. Technol.
12
,
30
(
2003
).
30.
S.-Z.
Li
,
J.-P.
Lim
,
J. G.
Kang
, and
H. S.
Uhm
,
Phys. Plasmas
13
,
093503
(
2006
).
31.
S.
Hofmann
,
A. F. H.
van Gessel
,
T.
Verreycken
, and
P.
Bruggeman
,
Plasma Sources Sci. Technol.
20
,
065010
(
2011
).
32.
Z.
Chen
,
G.
Xia
,
Q.
Zhou
,
Y.
Hu
,
X.
Zheng
,
Z.
Zheng
,
L.
Hong
,
Y.
Huang
, and
M.
Liu
,
Rev. Sci. Instrum.
83
,
084701
(
2012
).
33.
H.
Schluter
and
A.
Shivarova
,
Phys. Rep.
443
,
121
(
2007
).
34.
S. K.
Kang
,
A. -A. H.
Mohamed
,
H. W.
Lee
, and
J. K.
Lee
,
IEEE Trans. Plasma Sci.
39
,
2318
(
2011
).
35.
W.
Breazeal
,
K. M.
Flynn
, and
E. G.
Gwinn
,
Phys. Rev. E
52
,
1503
(
1995
).
36.
F.
Iza
,
S. S.
Yang
,
H. C.
Kim
, and
J. K.
Lee
,
J. Appl. Phys.
98
,
043302
(
2005
).
37.
D. W.
Liu
,
F.
Iza
, and
M. G.
Kong
,
Plasma Processes Polym.
6
,
446
(
2009
).
38.
J. J.
Shi
and
M. G.
Kong
,
Appl. Phys. Lett.
87
,
201501
(
2005
).
39.
S. J.
You
,
H. C.
Kim
,
C. W.
Chung
,
H. Y.
Chang
, and
J. K.
Lee
,
J. Appl. Phys.
94
,
7422
(
2003
).
40.
Kh.
Tarnev
,
J.
Engemann
, and
D.
Korzec
,
Appl. Phys. Lett.
87
,
131504
(
2005
).
41.
D. W.
Liu
,
F.
Iza
, and
M. G.
Kong
,
Appl. Phys. Lett.
93
,
261503
(
2008
).
42.
K.
Shimizu
,
T.
Ishii
, and
M.
Blajan
,
IEEE Trans. Plasma Sci.
46
,
1125
(
2010
).
43.
M.
Moravej
,
X.
Yang
,
M.
Barankin
,
J.
Penelon
,
S. E.
Babayan
, and
R. F.
Hicks
,
Plasma Sources Sci. Technol.
15
,
204
(
2006
).
44.
E. J.
Vera
, M.S. thesis, Naval Postgraduate School,
1972
.
45.
A. B.
Callear
and
P. M.
Wood
,
Trans. Faraday Soc.
67
,
272
(
1971
).
46.
K.
Shimizu
and
T.
Oda
,
Sci. Technol. Adv. Mater.
2
,
577
(
2001
).
47.
L.
Gao
,
J.
Sin
,
C.
Feng
,
J.
Bia
, and
H.
Ding
,
Phys. Plasmas
19
,
013505
(
2012
).
48.
M.
Laroussi
and
F.
Leipold
,
Int. J. Mass. Spectrom.
233
,
81
(
2004
).
49.
G. C.
Kim
,
H. W.
Lee
,
J. H.
Byun
,
J.
Chung
,
Y. C.
Jeon
, and
J. K.
Lee
,
Plasma Processes Polym.
10
,
199
(
2013
).
50.
M. G.
Kong
,
G.
Kroesen
,
G.
Morfill
,
T.
Nosenko
,
T.
Shimizu
,
J. V.
Dijk
, and
J. L.
Zimmermann
,
New J. Phys.
11
,
115012
(
2009
).
51.
H.
Wk. Lee
,
H. W.
Lee
,
S. K.
Kang
,
H. Y.
Kim
,
I. H.
Won
,
S. M.
Jeon
, and
J. K.
Lee
,
Plasma Sources Sci. Technol.
22
,
055008
(
2013
).
52.
J. H.
Choi
,
H.
Wk. Lee
,
J. K.
Lee
,
J. W.
Hong
, and
G. C.
Kim
,
Arch. Dermatol. Res.
305
,
133
(
2013
).
You do not currently have access to this content.