This is the first in a series of papers about collisionless, electrostatic micro-instabilities in stellarators, with an emphasis on trapped-particle modes. It is found that, in so-called maximum-J configurations, trapped-particle instabilities are absent in large regions of parameter space. Quasi-isodynamic stellarators have this property (approximately), and the theory predicts that trapped electrons are stabilizing to all eigenmodes with frequencies below the electron bounce frequency. The physical reason is that the bounce-averaged curvature is favorable for all orbits, and that trapped electrons precess in the direction opposite to that in which drift waves propagate, thus precluding wave-particle resonance. These considerations only depend on the electrostatic energy balance and are independent of all geometric properties of the magnetic field other than the maximum-J condition. However, if the aspect ratio is large and the instability phase velocity differs greatly from the electron and ion thermal speeds, it is possible to derive a variational form for the frequency showing that stability prevails in a yet larger part of parameter space than what follows from the energy argument. Collisionless trapped-electron modes should therefore be more stable in quasi-isodynamic stellarators than in tokamaks.

1.
B. B.
Kadomtsev
and
O. P.
Pogutse
,
Sov. Phys. JETP
24
,
1172
(
1967
).
2.
M. N.
Rosenbluth
,
Phys. Fluids
11
,
869
(
1968
).
3.
B. B.
Kadomtsev
and
O. P.
Pogutse
,
Sov. Phys. Dokl.
14
,
470
(
1969
).
4.
B. B.
Kadomtsev
and
O. P.
Pogutse
,
Nucl. Fusion
11
,
67
(
1971
).
5.
J. C.
Adam
,
W. M.
Tang
, and
P. H.
Rutherford
,
Phys. Fluids
19
,
561
(
1976
).
6.
D. W.
Ross
,
W. M.
Tang
, and
J. C.
Adam
,
Phys. Fluids
20
,
613
(
1977
).
7.
P. J.
Catto
and
K. T.
Tsang
,
Phys. Fluids
21
,
1381
(
1978
).
8.
G.
Rewoldt
,
W. M.
Tang
, and
E. A.
Frieman
,
Phys. Fluids
24
,
238
(
1981
).
9.
H. L.
Berk
,
M. N.
Rosenbluth
,
R. H.
Cohen
, and
W. M.
Nevins
,
Phys. Fluids
28
,
2824
(
1985
).
10.
A.
Kendl
,
Plasma Phys. Controlled Fusion
43
,
1559
(
2001
).
11.
P.
Xanthopoulos
and
F.
Jenko
,
Phys. Plasmas
14
,
042501
(
2007
).
12.
J. A.
Baumgaertel
,
G. W.
Hammett
,
D. R.
Mikkelsen
,
M.
Nunami
, and
P.
Xanthopoulos
,
Phys. Plasmas
19
,
122306
(
2012
).
13.
J. H. E.
Proll
,
P.
Helander
,
J. W.
Connor
, and
G. G.
Plunk
,
Phys. Rev. Lett.
108
,
245002
(
2012
).
14.
P.
Helander
,
C. D.
Beidler
,
T. M.
Bird
,
M.
Drevlak
,
Y.
Feng
,
R.
Hatzky
,
F.
Jenko
,
R.
Kleiber
,
J. H. E.
Proll
,
Yu.
Turkin
, and
P.
Xanthopoulos
,
Plasma, Phys. Controlled Fusion
54
,
124009
(
2012
).
15.
P.
Helander
,
Phys. Plasmas
14
,
104501
(
2007
).
16.
H.
Sugama
,
T.-H.
Watanabe
,
M.
Nunami
, and
S.
Nishimura
,
Phys. Plasmas
18
,
082505
(
2011
).
17.
18.
R. L.
Dewar
and
A. H.
Glasser
,
Phys. Fluids
26
,
3038
(
1983
).
19.
P.
Helander
and
D. J.
Sigmar
,
Collisional Transport in Magnetized Plasmas
(
Cambridge University Press
,
2002
).
20.
T. M.
Antonsen
and
B.
Lane
,
Phys. Fluids
23
,
1205
(
1980
).
21.
P. J.
Catto
,
W. M.
Tang
, and
D. E.
Baldwin
,
Plasma Phys.
23
,
639
(
1981
).
22.
J. W.
Connor
,
R. J.
Hastie
, and
P.
Helander
,
Plasma Phys. Controlled Fusion
48
,
885
(
2006
).
23.
G. G.
Plunk
,
T.
Tatsuno
, and
W.
Dorland
,
New J. Phys.
14
,
103030
(
2012
).
24.
P. H.
Rutherford
and
E. A.
Frieman
,
Phys. Fluids
11
,
569
(
1968
).
25.
J. B.
Taylor
and
R. J.
Hastie
,
Plasma Phys.
10
,
479
(
1968
).
26.
M. N.
Rosenbluth
and
M. L.
Sloan
,
Phys. Fluids
14
,
1725
(
1971
).
27.
J. W.
Connor
,
R. J.
Hastie
, and
T. J.
Martin
,
Nucl. Fusion
23
,
1702
(
1983
).
28.
P.
Helander
and
J.
Nührenberg
,
Plasma Phys. Controlled Fusion
51
,
055004
(
2009
).
29.
J.
Nührenberg
,
Plasma Phys. Controlled Fusion
52
,
124003
(
2010
).
30.
J. B.
Taylor
,
Phys. Fluids
7
,
767
(
1964
).
31.
P. H.
Rutherford
and
E. A.
Frieman
,
Phys. Fluids
11
,
252
(
1968
).
You do not currently have access to this content.