The filamentation instability triggered when two counter streaming plasma shells overlap appears to be the main mechanism by which collisionless shocks are generated. It has been known for long that a flow aligned magnetic field can completely suppress this instability. In a recent paper [Phys. Plasmas 18, 080706 (2011)], it was demonstrated in two dimensions that for the case of two cold, symmetric, relativistically colliding shells, such cancellation cannot occur if the field is not perfectly aligned. Here, this result is extended to the case of two asymmetric shells. The filamentation instability appears therefore as an increasingly robust mechanism to generate shocks.

1.
R.
Blandford
and
J.
Ostriker
,
Astrophys. J.
221
,
L29
(
1978
).
2.
A. R.
Bell
,
Mon. Not. R. Astron. Soc.
182
,
147
(
1978
), available at http://adsabs.harvard.edu/abs/1978MNRAS.182..147B.
3.
A. R.
Bell
,
Mon. Not. R. Astron. Soc.
182
,
443
(
1978
), available at http://adsabs.harvard.edu/abs/1978MNRAS.182..443B.
4.
C. B.
Hededal
,
T.
Haugbølle
,
J. T.
Frederiksen
, and
Å.
Nordlund
,
Astrophys. J. Lett.
617
,
L107
(
2004
).
5.
A.
Spitkovsky
,
Astrophys. J. Lett.
682
,
L5
(
2008
).
6.
S.
Nikolić
,
G.
van de Ven
,
K.
Heng
,
D.
Kupko
,
B.
Husemann
,
J. C.
Raymond
,
J. P.
Hughes
, and
J.
Falcón-Barroso
,
Science
340
,
45
(
2013
).
7.
8.
Y. B.
Zel'dovich
and
Y. P.
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Dover Publications
,
2002
).
9.
A.
Spitkovsky
, in
Astrophysical Sources of High Energy Particles and Radiation
, edited by
T.
Bulik
,
B.
Rudak
, and
G.
Madejski
(
American Institute of Physics Conference Series
,
2005
), Vol.
801
, pp.
345
350
, e-print arXiv:astro-ph/0603211.
10.
A.
Spitkovsky
,
Astrophys. J. Lett.
673
,
L39
(
2008
).
11.
X.
Liu
,
Y. T.
Li
,
Y.
Zhang
,
J. Y.
Zhong
,
W. D.
Zheng
,
Q. L.
Dong
,
M.
Chen
,
G.
Zhao
,
Y.
Sakawa
,
T.
Morita
 et al.,
New J. Phys.
13
,
093001
(
2011
).
12.
Y.
Kuramitsu
,
Y.
Sakawa
,
T.
Morita
,
C. D.
Gregory
,
J. N.
Waugh
,
S.
Dono
,
H.
Aoki
,
H.
Tanji
,
M.
Koenig
,
N.
Woolsey
 et al.,
Phys. Rev. Lett.
106
,
175002
(
2011
).
13.
G.
Gregori
,
A.
Ravasio
,
C. D.
Murphy
,
K.
Schaar
,
A.
Baird
,
A. R.
Bell
,
A.
Benuzzi-Mounaix
,
R.
Bingham
,
C.
Constantin
,
R. P.
Drake
 et al.,
Nature
481
,
480
(
2012
).
14.
A.
Bret
,
A.
Stockem
,
F.
Fiuza
,
C.
Ruyer
,
L.
Gremillet
,
R.
Narayan
, and
L. O.
Silva
,
Phys. Plasmas
20
,
042102
(
2013
).
15.
A.
Bret
,
L.
Gremillet
,
D.
Bénisti
, and
E.
Lefebvre
,
Phys. Rev. Lett.
100
,
205008
(
2008
).
16.
A.
Bret
,
L.
Gremillet
, and
D.
Bénisti
,
Phys. Rev. E
81
,
036402
(
2010
).
17.
B. B.
Godfrey
,
W. R.
Shanahan
, and
L. E.
Thode
,
Phys. Fluids
18
,
346
(
1975
).
18.
J. R.
Cary
,
L. E.
Thode
,
D. S.
Lemons
,
M. E.
Jones
, and
M. A.
Mostrom
,
Phys. Fluids
24
,
1818
(
1981
).
19.
A.
Bret
and
E. P.
Alvaro
,
Phys. Plasmas
18
,
080706
(
2011
).
20.
A.
Bret
and
M.
Dieckmann
,
Phys. Plasmas
15
,
062102
(
2008
).
21.
L.
Sironi
and
A.
Spitkovsky
,
Astrophys. J.
698
,
1523
(
2009
).
22.
A.
Bret
,
Comput. Phys. Commun.
176
,
362
(
2007
).
23.
A.
Bret
,
L.
Gremillet
, and
M. E.
Dieckmann
,
Phys. Plasmas
17
,
120501
(
2010
).
24.
See supplementary material at http://dx.doi.org/10.1063/1.4825236 to access the Mathematica Notebook.

Supplementary Material

You do not currently have access to this content.